
SCORM Engine 2012.1 
Documentation 
Last Modified: Aug 2, 2012 
 

SCORM Engine Integration 
Welcome 
Working Together 
The Kickoff Meeting 
The Setup Phase 
The Integration Phase 

Import 
Launch 
Rollup and Reporting 
Further Integration Considerations 

Testing Phase 
Going Forth 

Material Completion 
Certification 
"Powered By" Logo Use 
Support Process 
Troubleshooting 
Updates and Patches 
Synchronized Code Bases 

SCORM Engine Integration Architecture 
Background 
The Integration Layer 

Loosely Coupled 
Tightly Integrated 
Highly Customizable 

How It Works 
Data Relations 
External Configuration 

Tin Can API 
SCORM Engine Console 

Error Fixes 



What exactly is available with the new SCORM Engine? 
Upgrading from SCORM Engine 2011.1 (.NET) 

Web.config Additions 
IIS6 Setup (This should occur automatically in IIS7+ with above web.config addition) 

.NET 3.5 Requirement 
Database Upgrade Script 
SCORMEngineSettings.config Additions 

Installing and Configuring SCORM Engine 2012.1 
Getting the SCORM Engine Files Set Up Correctly 
Creating Your SCORM Engine IIS Web Application 
Letting Your DBMS (e.g., SQL Server) Know about SCORM Engine 
Teaching IIS to Speak SCORM Engine 

Upload/Import 
Database Connectivity 
Console 

Testing Your SCORM Engine Installation 

Security and the Tin Can API 

SCORM Engine Console: How It Should Look 
Import and Launch 
Tests 
Integration Details 
Web Server Configuration 

How You Can Have a Console of Your Very Own 
Configuring Your Database for Use with SCORM Engine 
Configuring Your Web Server for Use with SCORM Engine 

Controlling Access to Console 
Getting SCORM Engine Talking to Your Database 
Making the Web Server and the Filesystem Get Along 

Implementing the Integration Layer 
When Worlds Collide: The SCORM Engine Override Functions 

Your First Import 
Updating Content 

Your First Launch: Preview 
Your Second Launch: Tracking 
Beyond Console: Two Integrations Enter, One Integration Leaves 

Questions? Comments? Political Statements? 



SCORM Engine Console: How It Should Look 
Import and Launch 
Tests 
Integration Details 
Web Server Configuration 

How You Can Have a Console of Your Very Own 
Configuring Your Database for Use with SCORM Engine 
Configuring Your Web Server for Use with SCORM Engine 

Controlling Access to Console 
Getting SCORM Engine Talking to Your Database 
Making the Web Server and the Filesystem Get Along 

Implementing the Integration Layer 
When Worlds Collide: The SCORM Engine Override Functions 

Your First Import 
Updating Content 

Your First Launch: Preview 
Your Second Launch: Tracking 
Beyond Console: Two Integrations Enter, One Integration Leaves 

Questions? Comments? Political Statements? 

SCORM Engine Settings 
Working with the SCORM Engine Settings 

.NET 
Java 

The Settings 
Integration Class 
Data Persistence 
Advanced Data Persistence Settings 
Upload Import Control 
Registration Instance and Package Versioning 
Optional SCORM Engine Features 
Central / Remote Architecture 

SCORM Engine Launch Parameters 
Configuration 
Registration 
Package 
ManifestDirPath and WebPath 
Tracking 



ForceReview 
RegForCredit 
CC 
StartSCO 
Serializing and Encoding 
Common Configurations 

Launch a registration "normally" 
Launch a completed registration in review mode with no changes to the tracking data 
Launch an imported course in preview mode with no tracking 
Launch a course that does not "count" for credit, but should still be tracked 
Launch a course directly from a manifest that has not yet been imported 

Mode and Credit 

SCORM Engine Package Properties Reference 

SCORM Engine Scalability 
Introduction 
Why is this such a hard question? 

Deployment Variability 
Integration Variability 
Course Variability 
Usage Variability 

Empirical Evidence 
Stress Testing Results 
Methodology 
Results 
Conclusions 
Update - July 2009 

SCORM Engine Minimum Requirements 

Updating Your SCORM Engine for .Net 
SCORM Engine 2010.1 and higher 

Single SCORM Engine Web Application, default user interface 
Single SCORM Engine Web Application, custom user interface. 
Single Central SCORM Engine, multiple Remote SCORM Engines 

Upgrading the SCORM Engine to v2012.1 from v2011.1 
Step 1: Update the application files 
Step 2: Update your database 
Step 3: Configuration Additions 



SCORM Engine Integration 

Welcome 

Thanks for purchasing the SCORM Engine. We're eager to get started and to help you use 

the SCORM Engine to its full potential. This document will provide you with a road map to 

the integration process. It is not intended to be a comprehensive document listing every 

bit of functionality that the SCORM Engine provides, that would kill too many trees. 

Rather, this document will orient you to the integration process, set expectations and 

provide you with the key information needed to complete your integration. 

If at any time you find yourself wishing that you had more information, or that the 

SCORM Engine could do something more, or that the integration could be handled 

differently, please ask. Chances are that the answer is "Yes! The SCORM Engine is built 

for that and here's how to do it". You've purchased a very flexible piece of software that 

can handle most anything that's thrown at it, and if it can't, we'll find a way to make it. 

Working Together 

So far, you've probably been working with Tim (our one-man sales department) to gain 

some familiarity with the SCORM Engine and have concluded that the SCORM Engine is 

the right solution for you. Together you've been through demonstrations, some technical 

discussions and have executed a ​contract for licensing​. Now it's time for the business 

people to step aside and hand things over to the technical folks to work their magic. 

We have a team of developers that handle SCORM Engine integrations. We will assign one 

of them to this project to act as your integration consultant. The integration consultant is 

there to walk you through the process step-by-step. The consultant will handle all of the 

necessary SCORM Engine customizations and guide you through the changes that need to 

be made in your LMS. Our integrators are quite knowledgeable and are there to answer 

any questions you may have during the integration phase. 

During integration, we use a tool called ​Basecamp​ for project management. Basecamp 

provides a simple interface for exchanging messages, transferring files, tracking to-do 

lists and setting milestones. We strongly encourage the use of Basecamp for all electronic 

communication (you'll even notice our implementers logging summaries of phone calls in 

there). Basecamp provides you and us with a single place to go to find the latest 

deliverables, see notes from prior conversations and refresh our memories as to why 

things are implemented the way they are. We have found this tool to be invaluable to 

both our implementers and our clients. You will receive a welcome message via email with 

your log in information to Basecamp. We can add as many users as needed to the system, 

so if you have additional people who will be participating in this project or just want 

visibility into its progress, we'll be happy to give them access. 

Our expectation is that the integration consultant will be working very closely and very 

intensely with your developers over the next few weeks. There is a rough project schedule 

listed below that represents the typical timeline for SCORM Engine integrations (this work 

can go considerably faster for simple integrations). There is work to be done both on our 

side and on yours. If this schedule doesn't match your expectations or if the resources on 

http://docs.google.com/View?docid=dd2b2ff_29fgxsdzgw&revision=_latest
https://scorm.projectpath.com/


your side aren't fully available during this time period, please let us know so we can 

schedule accordingly.  

SCORM Engine Integration Timeline 

Week 1:​ Kickoff Meeting. Identify unique requirements. Generate 

integration layer. Initial deploy to client sandbox. 

Week 2​: Importing and Launching SCORM courseware. 

Week 3​: Rollup results. Coding for unique requirements. 

Week 4:​ Skinning the player. Final tweaks. Testing and cleanup.  

We have carefully architected the SCORM Engine to isolate our code from your code and 

vice versa. We maintain this barrier to ensure that changes to one system don't require 

additional integration work and don't adversely affect the other system. Similarly we find 

it best to maintain a similar boundary in the work that our integration consultants do and 

the work that your developers do. We are very reluctant to make changes or affect your 

code in any way. Your developers are the experts in your code and they are the ones that 

should be trusted to modify your system. We will work side by side with them, guide them 

and advise them as much as needed, but at the end of they day, they will be responsible 

for maintaining your system and they need to fully understand everything that is in there. 

Likewise, we do not expect your developers to become experts in our system overnight. 

We will gladly handle the the customizations and configurations needed in the SCORM 

Engine. If you prefer, we can also set your developers up with a simple development 

environment where they can make changes to the integration code. We are also happy to 

help your developers learn the innards of the SCORM Engine's source code should they be 

so motivated, but we don't want this learning curve to stand in your way. 

The Kickoff Meeting  

The first step in the integration process is a kickoff meeting with all involved parties. This 

is our chance to make introductions, work out some logistics and get the ball rolling. This 

is very much a working meeting from which we hope to take away most, if not all, of the 

information we need to generate your custom SCORM Engine integration. 

The biggest part of the kickoff meeting is a tour of your LMS. We need you to show us 

around and give us a feel for how your LMS works. During the tour we will be looking for 

any unique requirements you have that might necessitate an advanced integration or 

other tweaks to the SCORM Engine. We've seen more than a few LMS's in our days so we 

will probably be very quick to understand yours. 

We don't need to see everything your system has to offer, the main thing we need to 

figure out is how the entities in your system map to the entities in the SCORM Engine. 

Specifically, all LMS's have two entities that we will need to relate to, "packages" and 

"registrations". 

A "package" is often called a "course", "lesson", or 

"task". It is "the thing a learner takes". A package is 



the unit of online instruction that is registered for, 

launched and tracked. It corresponds to a single 

SCORM course.  

A "registration" is often called an "assignment", 

"instance", or "attempt". A registration is an instance of 

a user taking a package with a single set of tracking 

data. 

If something just clicked and you see how these concepts map directly to your system, 

great! If not, don't worry, our consultants excel at comprehending your system and 

identifying the appropriate touch points. 

During the tour, it will help to look at these areas of your LMS: 

How you import or create a new course. 

How a user is assigned to or registers for a course. 

How a user launches a course and sees his/her results. 

How administrators view reports on the results of training 

The LMS tour will segue into a look at your database schema. In the database schema, we 

are looking for two things, unique identifiers for a "package" and unique identifiers for a 

"registration". Every LMS has these concepts, but they can be called by different names 

and structured in different ways. These identifiers are the primary input our integration 

consultant needs to generate the first deliverable. 

Information about the platform(s) we will be working with is the final piece of information 

we need from the kickoff meeting. Would you like a Java or .Net version of the Engine? 

Which database platforms do you need to support, SQL Server, Oracle, MySQL, others? 

The supported versions of these platforms are also helpful. 

If there's time (and energy) during the kickoff meeting, we might get into topics that 

answer questions for later in the integration process. Specifically, the SCORM Engine 

needs to directly exchange two pieces of information with your system. First, the SCORM 

Engine needs ask your LMS for some information about each user (first name, last name 

and unique identifier). Second, the SCORM Engine needs to tell your LMS about the 

results of training it has delivered to a learner (we call this process "rollup"). We need to 

figure out the best way to perform this communication with your LMS. The SCORM Engine 

is quite flexible and can use any number of communication protocols, such as: 

Direct database reads/writes 

Web service invocations 

API calls to existing system objects 

Reading/Writing information from/to a querystring parameter 

Kickoff Meeting Checklist 

Introductions made and contact information exchanged 

LMS tour 

Unique identifier for package established 

Unique identifier for registration established 

Code and database plaftform(s) established 

Communication protocol established (Optional - often 

discussed later) 



The Setup Phase 

After the kickoff meeting, we're going to give you some homework to do while we go off 

and generate the foundation of the integration. 

Your homework is to get the SCORM Engine up and running in your development 

environment. The SCORM Engine itself isn't very usable without an LMS, so to get you 

started, we ship a simple SCORM Engine Console. The SCORM Engine Console is nothing 

more than a simple interface to the SCORM Engine that allows you to import and launch 

courses along with some debugging and system health tools. It will allow you to get 

everything set up and running in your environment before the integration with your LMS 

is completed. Once the integration code has been generated, the SCORM Engine Console 

provides us a way to deploy and test the integration code before it is tied into you system. 

See ​Instructions for Deploying the Noddy LMS for .Net​ and ​Instructions for Deploying the 

Noddy LMS for Java​ to get started. 

While you are deploying the SCORM Engine, our integration consultant will be busy 

generating a customized integration for your LMS. This integration will be tailored to the 

unique identifiers and supported platform(s) we identified during the kickoff meeting. See 

SCORM Engine Integration Architecture​ for more information about the technical aspects 

of this generated integration. 

The Integration Phase 

Now it's time to start hooking the two systems together. Our integration consultant will 

deliver a generated integration to you and instructions for deploying it to the Noddy LMS. 

The Noddy LMS will then be running with your specific code to let us simulate actions your 

LMS will eventually initiate after integration is completed. 

There are three primary touch points where we need to integrate our systems, "import", 

"launch" and "rollup". This document will cover these touch points at a high level. 

Key Integration Points 

Import​ - The act of adding a SCORM package to your 

LMS. This is the place in your system where new 

courses are created or ingested. 

Launch​ - The place where delivery of an online course 

is initiated by the user. 

Rollup​ - The transfer of course progress data from the 

SCORM Engine into your LMS. 

Import 

We typically begin the integration process with the import mechanism. The goal of this 

part of the integration is to ensure that your LMS has an interface to upload and import 

SCORM conformant courses. Your LMS may already have an existing interface for 

importing external courses. If so, it is usually best to make slight modifications to the 

http://docs.google.com/View?id=dcb7m9mj_54c5tkb6dw
http://docs.google.com/View?id=dcb7m9mj_57dswcz4rq
http://docs.google.com/View?id=dcb7m9mj_57dswcz4rq
http://docs.google.com/View?id=dcb7m9mj_61crz2vmcz


existing interface rather than attempting to create an entirely new interface, but that will 

vary from system to system. 

There are three main outcomes that need to be met for the import integration to succeed: 

File upload and deployment​ - SCORM courses are delivered as a set of 

files (often in a zip package). These files need to be uploaded to your LMS 

server and deployed to the appropriate locations for serving. The deployment 

process can be manual or automated, but there needs to be some form of 

administrative interface to enable it. 

Invoking the SCORM Engine's import routines​ - The SCORM Engine has 

some routines that need to be invoked to discover the course and properly 

populate the SCORM Engine's tables with data about the course. 

Package entity flagging​ - There needs to be some mechanism for flagging 

the package entity in your system as being a SCORM course that should 

launch with the SCORM Engine. 

The SCORM Engine comes with some reusable interfaces that will handle the first two 

items above. These interfaces can be easily dropped into your existing interfaces. 

Alternatively, if these interfaces aren't an ideal fit, we can show you how to create your 

interface to invoke the SCORM Engine import methods through either web service calls or 

through direct API calls. 

When thinking about the import mechanism, you will also want to think about package 

versioning. Package versioning controls how you handle updates to courses. We can help 

you select from several built in schemes for dealing with versioning that the SCORM 

Engine offers. These schemes should allow us to mirror the versioning functionality that 

your LMS currently uses or they can be completely transparent to the LMS and only 

applicable inside the SCORM Engine.  

The SCORM Engine offers over 60 customized settings for controlling how each courses is 

delivered to the user. We call these the "package properties". The ability to manipulate 

each course's package properties is essential to ensuring broad courseware compatiblity. 

The SCORM Engine offers a reusable interface for editing package properties (we 

recommend using this interface instead of your own as we are constantly adding new 

properties). After a course is imported, we need to make sure that your LMS provides 

administrators with a way of accessing these property settings.  

Launch 

Launching a course in the SCORM Engine is a simple matter of redirecting the user's 

browser to an appropriate URL with some querystring parameters appended. These ​launch 

parameters​ tell the SCORM Engine which course to launch, which registration identifier to 

associate the tracking data with and what "mode" to launch the course in. The format of 

these parameters is specific to your integration, however since the Noddy LMS is 

configured for your integration, it can provide examples of how to construct the launch 

settings. 

When building the launch mechanism, we will want to consider the different modes in 

which content can be launched and how they map to the functionality in your LMS. For 

example, your LMS might provide a way to preview content or a way to review completed 

content.  The SCORM Engine can handle these and other launch modes once they have 

been mapped to the functionality in your LMS. 

http://docs.google.com/View?id=dcb7m9mj_53d987d5rc
http://docs.google.com/View?id=dcb7m9mj_53d987d5rc


Also during launch development, we will want to consider registration "instances". An 

instance is to a registration as a version is to a package. We will need to examine your 

LMS's policies around re-taking courses to see how they map to the SCORM Engine's 

registration instance schemes and then select the scheme most appropriate for your 

situation. Registration instances are closely related to package versions as often, new 

versions of packages will trigger new instances of registrations. 

Rollup and Reporting 

The final major integration point is rollup and registration. This is where we take all of the 

detailed data stored by the SCORM Engine for a particular registration, consolidate it down 

to the data that is relevant to your LMS and push the data into your system. The first step 

in the rollup integration process is determing what data you actually care about. Usually, 

most LMS's will want to know high level data about the course such as its status, score 

and the amount of time the learner spent in the course. The SCORM Engine can provide 

this and much more. The key is to figure out what your LMS needs to operate and getting 

that data in the right place. We will want to look at things such as the data that is 

displayed to the student, the data that is available to administrators via reports and the 

data points that trigger actions in the system (such as moving a course to the transcript 

or taking it off the learner's to-do list, etc). There will also be some business rules to flesh 

out, such as if a course is completed and failed, can the user retake it? 

Once we have the required data identified, we then need to figure out the best way to 

technically get it into your system. Every time new data is saved to the SCORM Engine 

(this happens constantly while the course is being delivered), it triggers a process called 

"rollup". We can configure this rollup process to take any action we need it to. For 

instance, we can have it write data directly into your LMS's tables, we can have it call a 

web service or we can make an API call into your system. The critical data that the 

learner sees and that triggers actions in your LMS is pushed to your system via the 

SCORM Engine whenever there is new data. If your system requires more detailed data 

for reporting, it can either be pushed with the summary data, or pulled on demand by a 

later process.  

Further Integration Considerations 

There are a few other things that need to be considered when completing a basic 

integration. 

Learner information​ -  The SCORM standards require that the SCORM Engine make 

some information about the learner available to the content. Specifically, we will need to 

figure out how to retrieve the learner's name and a unique identifer for the user from your 

system.  

Database deployment ​- The SCORM Engine requires a database to operate. It can run 

on its own database, or within the context of your existing database. How this deployment 

is handled is largely a matter of style and your personal preference. 

Code integration​ - Similar to the database, the SCORM Engine can be tightly integrated 

into your code base to be compiled together, or it can be run as a stand alone compiled 

application (potentially on its own server). How code is integrated and deployed is also 

largely a matter of your existing setup and procedures. 

Skinning​ - The SCORM Engine is fully skinnable and can be customized to match 

whatever aesthetic scheme you desire.  



Advanced Integration​ - There is much more that the SCORM Engine can do and many 

more ways in which it can be tightly integrated into your LMS. An integration may want to 

explore other areas like distributed content delivery, tight authentication, integrated error 

logging, partitioned databases, advanced importing or offline deliver (using our SCORM 

Untethered product which is sold separately). Your integration consultant will happily talk 

you through these areas. 

Localization​ - The SCORM Engine capable of rendering the player and the SCORM Engine 

Package Properties Editor in a variety of languages.  By default, localization is 

automatically based on the browser's configured language.  However, if your LMS has its 

own means of establishing the user's locale the SCORM Engine can base its language off 

that instead. 

Testing Phase 

Once the integration is completed, it is of course important that we validate and test it. 

The best way to test the integration is simply to run a few sample courses through the 

cycle of importing, launching, and reporting. It is generally not necessary to test every 

combination and permutation of course type because the subtle errors that might be 

generated by course variations happen in the SCORM Engine itself and don't vary between 

integrations. To fully validate your SCORM conformance, ADL offers several ​Conformance 

Test Suites​ (one for each version of SCORM) that will thoroughly test your LMS and allow 

you to officially declare yourself SCORM conformant. It's not a bad idea to run these test 

suites, but generally not necessary to validate that your integration is functional. 

Going Forth 

Material Completion 

Once you are able to import and deliver and rollup data from courses (even just a couple 

of examples that we provide), you have achieved what we refer to as "material 

completion".  This a relevant milestone from both a process perspective and a contractual 

one.  From this point forward, we have found that your requests are often better 

managed via our support portal (see below for information).  Our project managers will 

confirm with you that you are comfortable importing content and that you can access the 

support portal as needed. 

It is important to understand that ​moving from the "implementation phase" to the 

"support phase" has no impact whatsoever on the level of support or access to our 

people​.  It is merely a change in process that helps us take better care of you. 

Certification 

ADL offers a ​certification program​ that formally certifies or declares products to be SCORM 

conformant. The SCORM Engine has been certified for every version of SCORM, but 

unfortunately this certification does not transfer to your product. To be formally certified 

by ADL, you must put your LMS through the certification process. The process is not hard 

and we will be happy to walk you through it. It costs about $2,000 and gives you the right 

to say that your LMS is ADL SCORM Certified and to use the certification logo. We 

recommend that all of our clients get certified. 

"Powered By" Logo Use 

http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004%204th%20Edition/Test%20Suite.aspx
http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004%204th%20Edition/Test%20Suite.aspx
http://www.academiccolab.org/certification/scorm/index.html


We want to make sure that you're getting the most out of SCORM Engine. Some of our 

customers prefer to tuck their use of our products away, and others want to scream from 

the mountaintop that they're using the best SCORM conformance software available. For 

the screamers, we've created a way for you to do just that. Visit our ​"Powered By"​ page 

for more info.  

Support Process 

We are always here for you, even after your integration is complete and your application 

is deployed. We have a dedicated support staff. If something goes awry after your 

integration is completed, please email us at ​support@scorm.com​ or visit our ​support 

portal​. This will open up a support ticket and ensure you the fastest response. Our 

integration consultants rotate between many projects, including development of our 

products, and may not always be available to answer your questions directly once the 

integration is complete. Our support staff has unfettered access to all of our consultants 

and developers and can quickly put you in touch with the best person to resolve your 

problem. 

For more details on the support process and our support portal, visit ​this document​. 

Troubleshooting 

Nobody's perfect, we all make mistakes and things don't always go as expected. When 

problems arise, the SCORM Engine provides a few mechanisms for getting additional 

diagnostic information. 

The most common problem our customers face is content behaving in unexpected ways. 

In almost every instance, this problem stems from a misunderstanding of the SCORM 

standard on the part of the content author, but we want to hear about these problems 

anyway so that we can ensure the SCORM Engine does everything it can to accommodate 

these varying interpretations of the standards. To diagnose SCORM content problems, the 

SCORM Engine maintains a very detailed debug log that tracks all of the SCORM calls 

made by the content as well as the internal SCORM logic that the SCORM Engine 

executed. This debug log can be accessed by clicking anywhere in the SCORM Engine's 

interface (the frames with the blue background in our default skin, or the frames that 

contain the table of contents or navigational elements). Then press the question mark key 

five times. This should cause the debug window to pop up. If there doesn't seem to be 

much information in the log, check the package properties for the course in question. The 

package properties have a few settings that control how much debug information is 

recorded, make sure that all of the properties are set to record information. More details 

about ​accessing the client-side debug log​ can be found in our support portal. 

For deeper problems that affect the operation of the SCORM Engine itself, we have a 

detailed server-side log that can be accessed. 

Rustici Software offers another tool that can be invaluable in diagnosing content 

problems. The ​SCORM TestTrack​ is a freely available hosted version of the SCORM Engine 

that is designed to quickly evaluate and debug courseware. The SCORM TestTrack always 

contains the latest updates and patches to the SCORM Engine. If content is not behaving 

as expected in your LMS, it is often useful to run the content through TestTrack as well to 

see if the problem is with your LMS and integration in particular or if it is a more general 

problem with the content or SCORM Engine. 

Our clients will often instruct content vendors to validate content on SCORM TestTrack 

before attempting to import it into their LMS. This step can save countless hours of 

troubleshooting and messaging back and forth. We provide this free service for this very 

reason and we encourage you to take advantage of it. Some clients have also installed 

http://www.scorm.com/rustici-software/poweredby
http://support.scorm.com/
http://support.scorm.com/
https://docs.google.com/document/d/19_av-lgAm24n_F7TZxKB11giE_Wa2SKU2IEOXzP2hg8/pub
http://support.scorm.com/forums/15735/entries/27991
http://scorm.com/scorm-solved/scorm-cloud/scorm-cloud-testing/


privately branded versions of TestTrack that are specific to their LMS. These licensed 

TestTrack instances can be customized to integrate directly into your content acceptance 

workflow to handle things like validation and approval. 

Updates and Patches 

We are constantly developing and improving the SCORM Engine. Our release schedule is 

largely dictated by the evolution of the standards, but we typically target about one major 

release per year. In the interim, we will periodically issue patches to fix significant errors 

or to deal with significant standards issues. These updates are available to any customer 

that is current with their licensing fees. Our support representatives will notify customers 

of new releases and we will post announcements to our blog as well. Patches are typically 

only applied as necessary to avoid overly burdensome update processes. Updates are 

generally straightforward to apply, but our consultants are available to you as needed. 

Synchronized Code Bases 

We maintain a current copy of the integration code specific to your LMS in an internal 

source control system. This system allows us instant access to your specific code base if 

we need to reference it to help troubleshoot an issue or upgrade your system. If you 

make any changes to your integration, please send them our way so we can keep our 

copy up to date. Also, if you need to make any changes to the source code of the core 

SCORM Engine, please let us know so that we can try to work your requirements into a 

release and keep you on the standard maintenance path. 

SCORM Engine Integration Architecture 

Last Modified: Jun 23, 2011 

Current SCORM Engine Version: 2012.1 

Background 

The SCORM Engine integrates with many, many systems, over 80 different LMS's at 

current count. It provides a piece of vital functionality to these systems and ​needs to be 

tightly integrated​ to provide both a seamless user experience and a robust technical 

implementation. 

While a tight integration is vital to the long term success of an LMS powered by the 

SCORM Engine, it is also important that these systems not be so interwoven that they 

cannot be maintained separately. Much of the value that Rustici Software provides its 

clients stems from our ability to maintain and improve the SCORM Engine as the 

standards evolve and new interpretations of them emerge. Similarly our clients must be 

able to evolve and improve their LMS's without being encumbered by the SCORM Engine 

or relying on Rustici Software to make code changes. Thus the SCORM Engine and the 

host LMS need to be remain logically separate systems. From a technical perspective, we 

say that the SCORM Engine ​needs to be loosely coupled​ with the host LMS. 

While many LMS's are quite similar in their basic structure and concepts, each has its own 

set of functionality that makes it unique. Different sets of business rules, innovative 

features and even subtle quirks can all affect how SCORM content should best be 



delivered in a particular LMS. Thus, the SCORM Engine ​needs to be highly 

customizable and configurable​ to handle whatever is thrown at it. 

So, the SCORM Engine needs to be tightly integrated, loosely coupled and highly 

customizable. Those three goals are often at odds with one another. It took some 

innovative design work to craft an architecture for the SCORM Engine that meets these 

requirements, but the effort has paid off. The "integration layer" architecture described in 

this document has enabled us to integrate the SCORM Engine with dozens of different LMS 

systems without ever having to make a major change to the core SCORM Engine code. 

The Integration Layer 

The integration layer is the interface between the SCORM Engine and the system with 

which it is integrating (the "host LMS"). It is also the boundary between the two systems, 

acting as a buffer to keep the core systems separate. 

(This document will refer to the "system with which the SCORM Engine is integrating" as 

the "host LMS". We use this term for convenience, but note that while most integrations 

are with an LMS, the SCORM Engine has been integrated with a number of systems not 

directly related to learning.) 

 

Loosely Coupled 

The diagram above depicts the conceptual architecture of the SCORM Engine integrated 

with an LMS through the integration layer. Notice that the SCORM Engine does not 

directly communicate with the host LMS. Instead, all communication is routed through the 

integration layer. The common interface of the integration layer provides a level of 

indirection that isolates the host LMS from changes in the SCORM Engine and vice versa. 

The integration layer is different for every integration of the SCORM Engine. The 

integration layer is also the ​only​ thing that is different for each integration of the SCORM 

Engine. The integration layer can be thought of as the "stuff we change" or the "stuff you 

are allowed to touch" when integrating. 

Tightly Integrated 

Notice that there is a very tight integration between the SCORM Engine and the 

integration layer. The integration layer is essentially a component of the SCORM Engine 

that can be swapped out for each integration. The interface between the integration layer 

and the host LMS can be very tight or very loose. The integration layer can communicate 



very loosely with the host LMS via web services (or even URL redirections). Or, the 

integration layer can invoke an LMS-provided API for a tighter integration. The integration 

layer can even make direct calls into the host LMS's database to achieve an extremely 

tight integration. All of these solutions are perfectly viable and it is up to the client to 

decide how tight a particular integration should be. 

Highly Customizable 

The integration layer is also where we can customize and configure the SCORM Engine. 

For anything that ever has been, or conceivably could be, customized in the SCORM 

Engine, there is an integration function that lets the SCORM Engine "ask" the integration 

how the action should be performed. For instance, before displaying the user interface, 

the SCORM Engine will ask the integration layer "which skin should I show?". Or, before 

writing a log message, the SCORM Engine will ask "where should I write this message 

to?". There are well over 100 integration functions that let us precisely customize the 

SCORM Engine for a particular host LMS. 

How It Works 

The core of the integration layer is an abstract class called the integration interface. The 

integration interface defines all the operations the SCORM Engine needs to perform which 

might vary based on the particular integration. For each integration, we create a unique 

class that implements all the methods defined in the integration interface. The method 

implementations in this subclass are specific to the host LMS and implement the 

functionality the client needs. At runtime, the SCORM Engine uses a factory class to 

instantiate the appropriate integration implementation. 

  

The UML diagram above depicts the class hierarchy for the integration classes. The boxes 

represent classes and the arrow indicate inheritance. At the top, is the abstract 

IntegrationInterface class. This class is where all of the integration methods are defined 

(but not implemented). At the bottom, there is are many concrete implementations of the 

the IntegrationInterface. Each client has their own unique implementation with all of the 

required methods implemented. 

In the middle, there is a DefaultIntegration class. The purpose of this intermediate class is 

to provide default implementations of the many methods in the IntegrationInterface that 



usually do not change from client to client. There are over 100 integration methods 

defined in the IntegrationInterface. Of these, only about a dozen are ​required​ to change 

from client to client. The rest of the methods are there to ​allow​ things to change between 

clients, but in most cases there is a default implementation that is perfectly acceptable. 

For example, in most cases, it is perfectly acceptable to log error messages to the 

standard event log. On the other hand, some LMS's have their own built in event tracking 

system, in which case it would be appropriate to override the default logging mechanism. 

Data Relations 

One of the core principles of the SCORM Engine integration design is that the host LMS 

should not need to know anything of the internals of the SCORM Engine. This separation 

helps to maintain the loose coupling between systems. Yet, many of the integration 

functions require that the systems communicate about a specific package or a specific 

registration. Rather than requiring the host LMS to know of the SCORM Engine's internal 

identifiers, the SCORM Engine defines a set of external identifier classes that allow the 

host LMS to use its existing identifiers no matter their structure and type. 

 

Every LMS uses a different set of identifiers (each with different data types) to represent 

packages and registrations. Some use integers, some use strings, some use GUIDs, some 

use a combination of all of these and more). Some LMS's refer to packages as courses, 

others as lessons or tasks or items or classes. The integration layer defines an abstract 

way to represent these complex and varying objects in a consistent manner through the 

ExternalPackageId and ExternalRegistrationId classes. 

When we create an integration we generate a concrete implementation of the 

ExternalPackageId and ExternalRegistrationId that is unique to the host LMS. These 

integration objects will have a set of properties that mirrors the keys used by the host 

LMS for the identified package and registration entities. These objects give the host LMS 

the ability to communicate with the integration layer​ in its own language​. 

 

These classes are each instances of the abstract ExternalId class which defines 

serialization methods for these classes. The serialization common to all external identifier 



objects allows LMS's to manipulate their identifiers as strings at times instead of 

instantiating actual ExternalId objects. 

The relationships between the SCORM Engine's internal concepts and package and 

registration with the host LMS's associated concepts is also reflected in the database. In 

keeping with the goal of tight integration with loose coupling, we allow two of the SCORM 

Engine's database tables to be modified during the integration. Both the ScormPackage 

table and the ScormRegistration table will have additional foreign key fields added to 

them to reflect their relationships with tables in the host LMS (tight integration). The 

other SCORM Engine tables remain untouched (loose coupling). 

SCORM Engine database tables before integration 

 

SCORM Engine database tables after integration 

  



External Configuration 

There is one more integration object that follows the same pattern of composition as the 

external package id and external registration id. The external configuration object is a 

"tunnel" for passing information from the host LMS to the integration layer. The external 

configuration object is perhaps best explained with an example. 

Take the SCORM Engine integration function LogError that was previously mentioned. This 

function is invoked by the SCORM Engine in the event of an unexpected runtime error so 

that diagnostic information about the error can be recorded for later analysis. Say Client X 

has service level agreements (SLAs) with a few select customers that imposes financial 

penalties for any system downtime. Because of these SLAs, Client X wants all of its 

support and development staff to be immediately notified by cell phone, pager, email, text 

message, singing telegram and carrier pigeon whenever an error affects a client with an 

SLA (note, we do not endorse inhumane treatment of pigeons). For all other clients, 

there's no need to interrupt anybody's sleep, so the error should just be recorded to a 

system log for later analysis. 

To implement the LogError function in the integration layer, we need to have some 

information about the current client available to us to know what actions to take. This 

need poses a problem because it is the SCORM Engine that invokes the LogError function, 

not the host LMS. The SCORM Engine only knows about packages and registrations, not 

LMS client SLAs. To expand this problem out further to all clients and all integration 

functions. There are innumerable data points upon which the integration functions might 

rely to make decisions. The SCORM Engine can't possibly be aware of all of these options, 

so another solution is needed. 

Enter the external configuration object. When the host LMS passes control to the SCORM 

Engine, it has the opportunity to pass along an external configuration object. Just like the 

other external ids (external package and external registration), the external configuration 

may contain any arbitrary set of properties. In other words, it can contain whatever 

information the integration layer might need. Anytime the SCORM Engine calls an 

integration function (i.e., anytime it might be calling back to the host LMS), it passes that 

same external configuration object to the integration layer. In this way, the external 

configuration object is like a tunnel that allows the host LMS to pass information through 

the SCORM Engine to the integration layer. 

In our example above, the integration would define a property called IsSLACustomer in 

the ClientXExternalConfiguration class. Then, when launching the course, the host LMS 

would set this flag appropriately before handing control over to the SCORM Engine. The 

SCORM Engine would then save this configuration information and pass it to the 

integration layer every time an integration call is made. The integration function can then 

examine this flag and take the appropriate course of action in the event of an error. 

 

Notable New Features 

Tin Can API 



Version 0.9 of the Tin Can API specification has been implemented within the SCORM 

Engine. If you are not familiar with the Tin Can API, please visit ​http://tincanapi.com. 

Additionally, the SCORM Engine will convert new and existing SCORM or AICC registrations 

into Tin Can statements for reporting purposes. 

SCORM Engine Console 

The SCORM Engine now includes an administrative console within the core SCORM Engine 

web application.  This provides diagnostic data as well as a home for functionality such as 

the Support Packager (aka “big red button”) and Tin Can OAuth consumer setup.  The 

console can be used at implementation-time to test out importing and launching without full 

LMS integration. 

Error Fixes 

1. Calculate scaled score in immediate rollup for scorm 1.2 to ensure that a rolled up 

score will come along with a completion if set.  Otherwise the completion would come 

through, but the score wouldn't be seen until termination time because the scaled 

score was only set within CloseOutSession(). 

2. Javascript Package Properties editor can now send updateAllVersions parameter to 

apply changes to all versions. 

3. ScormEngineManager.UpdatePackage() will now update the title of the package 

(organization). 

4. Runtime state persistence enhancements: Make SaveData() during ScoUnloaded 

synchronous.  Added code to mitigate issue with double postbacks where an 

intermittent post back is processed after an exit postback. 

5. Default Integration method SetCulture() (And GetCosmeticInfo) now supports setting 

of the culture code explicitly with a &cc query string param or form post param at 

launch time. 

6. Java JSPs are now explicitly sessionless to prevent needless server-side session 

creation. 

7. Parser warnings are now localized when using the .NET Import Control. 

8. Utilize DatabaseSchema (optional configuration property) in all code, including the 

NoddyLMS (demo app). 

9. German JavaScript strings formatting fix. 

10.Delete from ScormRegistrationSharedData when resetting / deleting registration data 

-- Prevented some 4th edition courses from being deleted. 

11.Allow AICC to work when ScormEngineUrl is defined as a relative URL (absolute URL 

is constructed internally from the launch URL). 

12. For SCORM 1.2, immediately set score.scaled when score.raw is set rather than 

waiting for SCO Termination. 

13.Added connection pooling to JdbcDatahelper for use when a direct db connection is 

configured instead of a Datasource. 

14. Improved package delete syntax so ScormEngineManager.DeletePackage() is more 

efficient for bulk deletes. 

http://tincanapi.com./


15.Default Package Properties Editor to use English when a bad language code is 

specified rather than giving JS error. 

16. Java SupportPackager fixed to propertly render in all browsers (changed content 

type to text/html).  Also added ExternalConfiguration. 

17. Fixed a scoring divide-by-zero error if you have all zero scores and change package 

property for rollup to "all non-zero scores". 

18.Disregard case of launch-time query string parameters -- "Registration", when 

uppercased, would be sent twice to the deliver page. 

19.Added a couple additional Java web services methods to match up with what's 

available .NET-side. 

20.Added interactions and objectives to AICC Launch History. 

21. Package Property editor will now work correctly with older IE6 browsers. 

22. Fixed Oracle’s DeletePackage implementation 

23. JNDI Lookup improvements (java) 

24. Invoke activity rollup upon abnormal exit with suspend all 

25.And other minor internal changes and unit tests... 

 

What exactly is available with the new SCORM Engine? 
Learning Record Store (LRS) capabilities with a fully functioning Tin Can API 
(TCAPI) endpoint, as well as a new web service that implements TCAPI 
mapping of Tin Can activities to traditional SCORM Engine registrations, which 
allows TCAPI activities to launch and report to the SCORM Engine in a similar 
fashion as SCORM and AICC, thereby "playing nicely" in a traditional LMS 
workflow 
automatic and on-demand generation of Tin Can statements from SCORM and 
AICC registrations 
integrated Tin Can statement viewer 

Upgrading from SCORM Engine 2011.1 (.NET) 
Upgrading the SCORM Engine is trivial.  Once done, here is how you can configure it for Tin 
Can and start playing with some real data. 

Web.config Additions 

This part is a little quirky but it's the best we've got at the moment.  First first off, the web.config 
for the main SCORM Engine application differs depending on the version of IIS you are 
deploying to. 
For both IIS 7 and IIS 6 add this: 
   ​         <httpHandlers> 



                   <add path="TCAPI/Processor" verb="*" 

type="RusticiSoftware.ScormContentPlayer.Util.TCAPIHandler, 

RusticiSoftware.ScormEngine"/> 

           </httpHandlers> 

           <httpModules> 

                   <add name="TCAPIPreProcessor " 

type="RusticiSoftware.ScormContentPlayer.Util.TCAPIPreProcessor, 

RusticiSoftware.ScormEngine"/> 

           </httpModules> 

   </system.web> 

N.B.​ If you’re using our upload/import control, you’ll need to preserve the verb for AjaxPro in 
httpHandlers ​ for both IIS 6 and 7: 
<add verb="POST,GET" path="ajaxpro/*.ashx" 

type="AjaxPro.AjaxHandlerFactory, AjaxPro.2" /> 

For IIS 7 add this as well after ​<system.web> ​: 
    <system.webServer> 

           <httpErrors errorMode="Detailed" />  

           <handlers> 

                   <add name="TCAPI/Processor" path="TCAPI/Processor" 

verb="*" type="RusticiSoftware.ScormContentPlayer.Util.TCAPIHandler, 

RusticiSoftware.ScormEngine" preCondition="integratedMode" /> 

           </handlers> 

           <modules runAllManagedModulesForAllRequests="true"> 

                   <add name="TCAPIPreProcessor" 

type="RusticiSoftware.ScormContentPlayer.Util.TCAPIPreProcessor, 

RusticiSoftware.ScormEngine" /> 

           </modules> 

   </system.webServer> 

IIS6 Setup (This should occur automatically in IIS7+ with above 
web.config addition) 

To get the TCAPI REST binding to work, IIS must be configured to allow requests with no file 
extension, and for paths that don't map to real files.  To do this, edit the ScormEngineInterface 
web application: 

Go to Properties -> Virtual Directory -> Configuration (under Application Settings) 
-> Add 
Fill in Executable with .NET ISAPI dll (can copy from aspx extension), and 
Extension with ".*" (no quotes) 
Make sure to UNCHECK the option "Check that file exists" 



.NET 3.5 Requirement 
For the .NET version of the SCORM Engine you’ll need to insure that the Microsoft .NET 
Framework 3.5 is installed. 
http://www.microsoft.com/en-us/download/details.aspx?id=22 

Database Upgrade Script 
As with most SCORM Engine upgrades, you'll need to update the db schema by running a 
script.  Run ​SCP_2012.1_UPGRADE_FROM_SCP_2011.1_SQLSERVER_SCP.sql ​ ​ (or 
ORACLE, MYSQL, etc) in the tool of your choice. 

SCORMEngineSettings.config Additions 
SystemHomepageUrl​ - Get the absolute URL of the cannonical, permanant, 
homepage for this system. Ideally this really is the homepage a user would use to 
access the system, but this must be cannonical and permanant, that is: it is a 
single URL the system can be identified by.  Used by Tin Can when creating 
Actors from users in the system. 
TinCanRootAccount - ​​This is a colon-delimited name and password like 
"admin:mypass" which can be used to authenticate against the TCAPI with 
administrator rights.  This parameter is required to use the built-in console's Tin 
Can statement viewer. 
ConsolePassword​ - Password to gain access to the /tools/console/console.aspx 
page which contains some SCORM Engine diagnostic tools and hooks to the Tin 
Can Statement viewer. 

Installing and Configuring SCORM Engine 2012.1 
Basic installation for SCORM Engine 2012.1 doesn’t differ dramatically from previous versions. 
We’ve already discussed some of the new requirements created by our support for TCAPI. 
What follows are the basic steps to get SCORM Engine up and running out of the box. 

Getting the SCORM Engine Files Set Up Correctly 



At some point, you’ll receive an official release of SCORM Engine 2012.x from us. This will 
typically look something like this: ​scormengine_net_scorm2004_2012.1.0.2.zip 
You’ll want to unzip this archive to wherever your SCORM Engine web application will live. The 
ScormEngineInterface directory in our release archive is the one that will become your IIS web 
application. So you’ll want to make sure that the ASP.NET user has full control of that directory 
under Properties->Security. 

Creating Your SCORM Engine IIS Web Application 
In the Internet Information Services app in Windows, you’ll want to create a new virtual directory 
for ScormEngineInterface which we commonly name simply “scormengine”. 

Letting Your DBMS (e.g., SQL Server) Know about SCORM Engine 
In order to run SCORM Engine, we have to execute some data definition language (DDL) 
statements in SQL to make sure that the tables our application needs are in your database. To 
do this, launch Microsoft SQL Server Management Studio (MSSMS). In the SQLSERVER 
directory, open the files ​1-2011.1_SQLSERVER_SCORMENGINE.sql ​ and 
2-2011.1_SQLSERVER_VANILLAINTEGRATION.sql ​. If you already know which database 
your SCORM Engine tables and data will live, select it. Then execute the two files in sequence. 
If you’re using one of the other DBMSes supported by SCORM Engine (MySQL, Oracle, or 
PostgreSQL), use the relevant tool and execute the same SQL in the corresponding directory 
for your DBMS. 

Teaching IIS to Speak SCORM Engine 
Even though you’ve already set up your SCORM Engine IIS web application, you still need to 
update the configuration that will be used by IIS so that it can play nicely with SCORM Engine. 
At a minimum, you’ll need to update the following values in SCORMEngineSettings.config to 
reflect your local environment. 

Upload/Import 

WebPathToContentRoot: a URL that points to the top-level directory where your 
content will live after it’s been uploaded and unzipped 
FilePathToContentRoot: an absolute filepath to the same directory on your 
filesystem 
FilePathToUploadedZippedPackage: an absolute filepath to the directory on your 
filesystem where your content will get uploaded before being unzipped 



Database Connectivity 

DataPersistanceEngine: the DBMS you’re using (e.g., “sqlserver”) 
DatabaseConnectionString: the connection string required by that DBMS to 
create a valid connection 

Console 

ConsolePassword: console uses this value for basic authentication. After the first 
authentication, subsequent authorization is governed by a cookie. 

Testing Your SCORM Engine Installation 
Once you’ve gotten this far, you should be able to navigate to the SCORM Engine console 
directly in your ScormEngineInterface. E.g., something like this: 
[yoursite]/ScormEngineInterface/tools/console/console.aspx 

Provided you’ve got your database connection configured correctly, you should be prompted to 
log in. After you’ve used your ​ConsolePassword ​ to log in, you should see the dashboard of 
your console. If both the database and filesystem tests are passing, you’re ready to try importing 
content! 
Try importing a Tin Can package. If the import works, return to the console dashboard and try 
launching it in preview mode. If preview mode works, try launching it with an actual registration. 
If that works, return to the console dashboard and see if you see corresponding statements in 
your Statement Viewer. If you do, then you’re ready to be driven by SCORM Engine! Now it’s 
time to work on your integration... 

Security and the Tin Can API 
Each statement that comes into the Tin Can web service is evaluated for access rights before 
proceeding.  The first thing that's determined is the "Asserter".  The Asserter is essentially a 
combination of an Actor and a set of permissions.  The Actor here is the person/system that is 
acting as the authority for the Tin Can statement being processed.  When statements are being 
written, this Actor actually shows up as the authoritative source in the statement. 
Tin Can security is fully customizable through new SCORM Engine Integration methods.  If 
using basic authentication you will likely want to implement: 
Actor TinCanGetAuthorityFromBasicAuth(TCAPIContext context, String 

username, String password); 



The default implementation will only accept one username/password which has full authority. 
This name/password is defined by your SCORMEngineSettings.config entry named 
"TinCanRootAccount".  This config entry has both the name and password separated by a 
colon. Ex: "joeadmin:mypass". 
If using OAuth we already have a good default implementation so you probably won’t override 
this, at least initially.. 
What a particular user can do is defined by the Integration method 
TinCanGetPermissions(). ​  We have defaults for the root user, a person(actor) and an 
application(actor).  However, by overriding this integration method you can have fine-grained 
control to all permissions. 

So You Want to Integrate 
SCORM Engine for .NET 
Welcome to SCORM Engine! 
As a SCORM Engine customer, you'll have access to our development staff during the initial 
integration process and for as long as you maintain a support agreement. You'll also have 
access to tools that we hope will assist you for as long as you run SCORM Engine. 
This document is geared toward what you'll see after the integration kickoff call, but the 
technologies covered will be available to you in your SCORM Engine installation for the duration 
of your use of the software. 
As of the latest major release of SCORM Engine, we now offer a console to SCORM Engine. 
From the console, you can: 

import and launch content 
review registrations and launch history 
see a basic health check of your SCORM Engine environment 
get basic statistics about your use of supported learning standards 
get a snapshot of key integration details 
execute some basic database functions 
access a basic Tin Can statement viewer and manage OAuth consumers 

By the time you’re done reading this document and following its prescriptions, we want you to 
be able to use the console to import and launch content in a fully functional SCORM Engine 
integration. First, we take you through an overview of the SCORM Engine console. Then we tell 
you how to get yours up and running as you embark on the actual process of integration. 
As you read and complete each step of this second portion of this document, you can track your 
own progress in the console dashboard. First you’ll start seeing green lights in the self-test 
health check up. Ultimately, you’ll be able to import and launch content. 
Have fun! 



(And be sure to let us know what could make this process better and more fun if you don’t...) 

SCORM Engine Console: How It Should Look 
Pictured here is a screenshot of the SCORM Engine console dashboard running against a very 
basic integration for a sample customer called Vanilla: 

 

Import and Launch 
You can see that we've imported into this instance of SCORM Engine one of our golf sample 
courses (which also shows as the only Tin Can course in the Statistics box over to the right). 



 

Tests 
You can also see in the SCORM Engine Tests box that we've got a valid database connection, 
that our courses directory is readable and writable, and that we’ve set a non-default password 
for access to console. 

 

Integration Details 
Under Integration Details at the bottom, you can see the database connection that is being used 
to drive this instance of SCORM Engine, the version of the SCORM Engine software, and the 
.NET files in use for the integration. You can also see that we've specified an external package 
key of CourseId, an external registration key of CourseId and Username, and no external 
configuration keys. Finally, you can see how your launch URLs will look. 

 



Web Server Configuration 
The final section on the console dashboard is for the web server configuration values relevant to 
successful operation of SCORM Engine. We display configuration settings as key/value pairs. 

 

How You Can Have a Console of Your Very Own 
In order to get to this point, we had to complete the basic integration process, which involved 
three steps: 

running the SCORM Engine database script 
making some basic changes to the SCORM Engine web server configuration file 
implementing core overrides in the main integration file 

.NET users have a slight advantage in that the comprehensive environment available in Visual 
Studio allows for console to be played directly in debugging mode right from Visual Studio rather 
than having to navigate to its URL via a web browser. If you want to access console directly, 
however, it’s also available at /ScormEngineInterface/tools/console/console.aspx. 

Configuring Your Database for Use with SCORM Engine 
As part of our delivery, we include a SQL file containing data definition language (DDL) 
statements (e.g., CREATE TABLE, etc.) for the SCORM Engine data model. 
You’ll need to execute this collection of SQL statements in the DBMS (e.g., SQL Server, 
MySQL, Oracle, PostgreSQL) you’re using with SCORM Engine. In our Vanilla example, we’re 
using SQL Server. You’ll find the SQL for your DBMS in the Database folder in your SCORM 
Engine folder. Each DBMS has its own subfolder. 
You should only need to run this SQL once for each instance of SCORM Engine. 



Configuring Your Web Server for Use with SCORM Engine 
We include a web server configuration file specific to SCORM Engine in both our .NET 
(SCORMEngineSettings.config) and Java (SCORMEngineSettings.properties) releases. You’ll 
need to update this configuration file to get both SCORM Engine and the console working. 
In these examples, we’ll be using the syntax for IIS, but the key/value pairs are the important 
pieces, and they’re fairly consistent across our .NET and Java releases. And if you ever have 
any questions, just ask! 
This first round of settings will be in the ​<​appSettings​>​ block of SCORMEngineSettings.config. 

Controlling Access to Console 

Console is your gateway to SCORM Engine. It includes both information and controls that you 
probably don’t want the entire world to see, so we protect it with an authentication mechanism 
that uses a combination of a configuration key and a cookie. 
The very first time you try to access console, it will look like this: 

 
That password is governed by the ConsolePassword entry in your config. In the appSettings 
block, you’ll want an entry like this: 
<​add​ ​key​=​"​ConsolePassword​"​ ​value​=​"​YourChosenPassword​"​/> 
After you’ve authenticated successfully, console will set a cookie, and you will be able to bypass 
the login prompt and get straight to the dashboard. 
If you ever want to disable access via a given browser that has previously authenticated, you’ll 
need to delete the SECONSOLE cookie. 

Getting SCORM Engine Talking to Your Database 

In SCORMEngineSettings.config, we need to specify the connection details for the database set 
up in step 1. We’ll need to adjust the entries for DataPersistenceEngine and 
DatabaseConnectionString. In our example, we use these values: 
<!--​ Data Persistence ​--> 
<​add​ ​key​=​"​DataPersistanceEngine​"​ ​value​=​"​sqlserver​"​/> 



<​add​ ​key​=​"​DatabaseConnectionString​" 
value​=​"​server=localhost;uid=sa;pwd=notarealpassword;database=se2011.1.0​"​/> 
DataPersistanceEngine just specifies the DBMS being used (i.e., sqlserver, mysql, oracle, or 
db2). The DatabaseConnectionString needs the basics for a database connection: a hostname, 
a user ID, a password, and the name of the database where SCORM Engine will live (and 
where you should’ve run the DDL statements referenced earlier in this document). 
We are using SQL Server’s ​sa ​ user in our example. If you have a database user that you’ll be 
using for SCORM Engine, just make sure it’s in the connection string. 
Once you’ve completed this step, you should be able to play the SCORM Engine Console in 
Visual Studio and see a green ​passed​ in the Database Connection test on the dashboard. 

Making the Web Server and the Filesystem Get Along 

In order to get import working, you’ll need to make sure the web server has somewhere on the 
filesystem to put content files. There are four values you’ll want to set in order for SCORM 
Engine to be able to import successfully: 

WebPathToContentRoot — the URL (can be an absolute path without the 
protocol or server) to web-accessible folder where your content will live 
FilePathToContentRoot — the full filesystem file path to where the same content 
exists on the server 
FilePathToUploadedZippedPackage — the full filesystem file path to where 
zipped packages will be uploaded before being unzipped, imported, and moved 
to the content root 
UrlToUploadResources — the URL (can be an absolute path without the protocol 
or server) indicating where your upload mechanism lives 

In the case of the two filepaths, these need to be writable by the web server. 
Here’s how this section of the appSettings block looks in SCORMEngineSettings.config for our 
Vanilla integration: 
<!--​ Upload Import Control ​--> 
<​add​ ​key​=​"​WebPathToContentRoot​"​ ​value​=​"​/ScormEngineInterface/tools/test-courses​"​/> 
<​add​ ​key​=​"​FilePathToContentRoot​"​ ​value​=​"​C:\Documents and 
Settings\DevUser\Desktop\SCORM Engine Integration 
Template\ScormEngineInterface\tools\test-courses​"​/> 
<​add​ ​key​=​"​FilePathToUploadedZippedPackage​"​ ​value​=​"​C:\Documents and 
Settings\DevUser\Desktop\SCORM Engine Integration 
Template\ScormEngineInterface\tools\test-courses\uploads​"​/> 
<​add​ ​key​=​"​UrlToUploadResources​" 
value​=​"​/ScormEngineInterface/scripts/EngineUtils/UploadImportControl/​"​/> 
Once you’ve got these values set up in your configuraiton file with permissions to the directories 
such that the web server can write to them, you should have another ​passed​ test in the console 
dashboard. 



Implementing the Integration Layer 
As part of our delivery, we ship you four files that constitute your integration layer: 

a file containing your external configuration, i.e., information your LMS might 
want to use in SCORM Engine that is available to all integration functions 
(VanillaExternalConfiguration.cs in our example) 
a file containing your external package ID, the keys we’ll use to uniquely identify 
your content during import and launch (VanillaExternalPackageId.cs in our 
example) 
a file containing your external registration ID, the key(s) we’ll use to uniquely 
match a learner to a launch (VanillaExternalRegistrationId.cs in our example) 
a file containing your integration override functions (VanillaIntegration.cs in our 
example) 

We should have delivered you versions of each of the external files with the keys already 
populated, but you will always be able to see their status in console. 
And you’ll have stubs of the core override functions in your main integration file, but you will 
need to complete implementation of these overrides in order to have a complete integration 
between your LMS and SCORM Engine. 

When Worlds Collide: The SCORM Engine Override Functions 

The core override functions go in our main integration file, VanillaIntegration.cs: 
GetLearnerInformation()​ — gets the learner name and ID from the host LMS for 
storage in SCORM Engine 
AddExternalPackage()​ — required when you’re computing the package keys in 
the host LMS rather than passing them directly via the upload/import control 
RollupRegistration()​ — persists data to the SCORM Engine server at regular 
intervals (by default every 10 seconds) 
RollupRegistrationOnExit()​ — persists data only upon completion of the 
content (e.g., return to LMS) 
GetExternalPackageIdFromExternalRegId()​ — required to correctly identify 
content in integrations where the registration keys do not include the package 
keys 

As mentioned above, we provide stubs for each of these functions upon delivery of your 
integration code (including only definitions for the ones that matter for your integration; you 
might not need GetExternalPackageIdFromExternalRegId(), for instance), but you’ll likely need 
to customize them. For instance, if you’re tracking learning in your LMS, you’ll need the logic for 
storing that tracking information in your non-SCORM Engine LMS database to be included in 
your rollup override(s). 



Your First Import 
As a part of your SCORM Engine delivery, you’ll find an example import file (import.aspx) in 
/ScormEngineInterface/tools/console. This is how console will allow you to test your imports, but 
you can also model your integrated import process on it. It uses an upload/import control we 
provide that is available for you to use to integrate imports however you like. 
Here is how the import screen will look in console (and if you use our default upload/import 
control in your final integration): 

 
When you import, you might already have your external package ID available. If so, you can just 
pass that in to the import process. In console, if you’ve got a package ID already, you add it to 
the query string on import.aspx. E.g., 
import.aspx?package=CourseId|123 
Then reload import.aspx. After you reload, when you submit the import form it will be able to 
grab the package ID from the query string and complete the import. 
If you don’t have your external package ID at the time of import, and instead prefer that the 
import process generate one for you, we provide an overridable method called 
AddExternalPackage(). In this method, you can grab the title and description and whatever else 
you might need from the manifest and store them to your host system while also generating the 
package ID. 
We provide you with sample code for this method. If you’re not using it, we typically leave the 
code commented out and throw an exception to remind you that you need to pass in the 
package ID during the import process. 



Updating Content 

SCORM Engine comes with content versioning built in, so you can update a package in place 
without creating multiple parallel instances of your content. If you click Update Package under a 
course title in console dashboard, you’ll see a screen like this: 

 
You’ll notice there are only three options now. It doesn’t really make sense to create a package 
from scratch if you’re in the process of updating a pre-existing package. 

Your First Launch: Preview 
After you’ve successfully imported a course, even if you haven’t completed your core overrides 
for tracking learning, you’re ready to test a preview launch. 
To test a preview launch, click on the title of an imported course. You’ll see a link for “Preview.” 
Click it, and you should be able to launch the course without worrying about learner information 
or rollup. 



 
If you’ve gotten this far, you’re in very good shape. It’s sort of a metaphorical ​passed​. 

Your Second Launch: Tracking 
After you’ve completed your GetLearnerInformation() and rollup override(s), you should be 
ready to test launching again, this time with SCORM Engine tracking learning. 
To test a tracked launch, click the “New Registration” link beneath the title of one of your 
imported courses in the console dashboard. Now you should be able to track learning, which will 
include launch history and the ability to relaunch the content corresponding to this registration. 



 

Beyond Console: Two Integrations Enter, One Integration Leaves 
We provide SCORM Engine console to give you a snapshot of the functionality of your SCORM 
Engine setup and to serve as a sort of integration assistant. Getting it set up is almost like 
completing pre-integration. 
At this point, all that likely remains for you to have a SCORM-conformant LMS is to integrate the 
upload/import controls as tightly as you’d like with your LMS and to ensure that your production 
environment is configured successfully (assuming that you set up SCORM Engine in a 
development environment to begin with). 
If you started with console running in a dev environment, you’ll still be able to run it in your 
production environment since it will run anywhere a successful ScormEngineInterface 
installation lives. 

Questions? Comments? Political Statements? 



Was this tutorial helpful? 
Are you up and running and SCORM conformant? 
Did we miss anything? 
Was anything confusing? 
We want to know! 
Send us a note at ​support@scorm.com​. 
Thanks again for using SCORM Engine to deliver learning that counts! 

So You Want to Integrate 
SCORM Engine for .NET 
Welcome to SCORM Engine! 
As a SCORM Engine customer, you'll have access to our development staff during the initial 
integration process and for as long as you maintain a support agreement. You'll also have 
access to tools that we hope will assist you for as long as you run SCORM Engine. 
This document is geared toward what you'll see after the integration kickoff call, but the 
technologies covered will be available to you in your SCORM Engine installation for the duration 
of your use of the software. 
As of the latest major release of SCORM Engine, we now offer a console to SCORM Engine. 
From the console, you can: 

import and launch content 
review registrations and launch history 
see a basic health check of your SCORM Engine environment 
get basic statistics about your use of supported learning standards 
get a snapshot of key integration details 
execute some basic database functions 
access a basic Tin Can statement viewer and manage OAuth consumers 

By the time you’re done reading this document and following its prescriptions, we want you to 
be able to use the console to import and launch content in a fully functional SCORM Engine 
integration. First, we take you through an overview of the SCORM Engine console. Then we tell 
you how to get yours up and running as you embark on the actual process of integration. 
As you read and complete each step of this second portion of this document, you can track your 
own progress in the console dashboard. First you’ll start seeing green lights in the self-test 
health check up. Ultimately, you’ll be able to import and launch content. 
Have fun! 
(And be sure to let us know what could make this process better and more fun if you don’t...) 



SCORM Engine Console: How It Should Look 
Pictured here is a screenshot of the SCORM Engine console dashboard running against a very 
basic integration for a sample customer called Vanilla: 

 

Import and Launch 
You can see that we've imported into this instance of SCORM Engine one of our golf sample 
courses (which also shows as the only Tin Can course in the Statistics box over to the right). 



 

Tests 
You can also see in the SCORM Engine Tests box that we've got a valid database connection, 
that our courses directory is readable and writable, and that we’ve set a non-default password 
for access to console. 

 

Integration Details 
Under Integration Details at the bottom, you can see the database connection that is being used 
to drive this instance of SCORM Engine, the version of the SCORM Engine software, and the 
.NET files in use for the integration. You can also see that we've specified an external package 
key of CourseId, an external registration key of CourseId and Username, and no external 
configuration keys. Finally, you can see how your launch URLs will look. 

 



Web Server Configuration 
The final section on the console dashboard is for the web server configuration values relevant to 
successful operation of SCORM Engine. We display configuration settings as key/value pairs. 

 

How You Can Have a Console of Your Very Own 
In order to get to this point, we had to complete the basic integration process, which involved 
three steps: 

running the SCORM Engine database script 
making some basic changes to the SCORM Engine web server configuration file 
implementing core overrides in the main integration file 

.NET users have a slight advantage in that the comprehensive environment available in Visual 
Studio allows for console to be played directly in debugging mode right from Visual Studio rather 
than having to navigate to its URL via a web browser. If you want to access console directly, 
however, it’s also available at /ScormEngineInterface/tools/console/console.aspx. 

Configuring Your Database for Use with SCORM Engine 
As part of our delivery, we include a SQL file containing data definition language (DDL) 
statements (e.g., CREATE TABLE, etc.) for the SCORM Engine data model. 
You’ll need to execute this collection of SQL statements in the DBMS (e.g., SQL Server, 
MySQL, Oracle, PostgreSQL) you’re using with SCORM Engine. In our Vanilla example, we’re 
using SQL Server. You’ll find the SQL for your DBMS in the Database folder in your SCORM 
Engine folder. Each DBMS has its own subfolder. 
You should only need to run this SQL once for each instance of SCORM Engine. 



Configuring Your Web Server for Use with SCORM Engine 
We include a web server configuration file specific to SCORM Engine in both our .NET 
(SCORMEngineSettings.config) and Java (SCORMEngineSettings.properties) releases. You’ll 
need to update this configuration file to get both SCORM Engine and the console working. 
In these examples, we’ll be using the syntax for IIS, but the key/value pairs are the important 
pieces, and they’re fairly consistent across our .NET and Java releases. And if you ever have 
any questions, just ask! 
This first round of settings will be in the ​<​appSettings​>​ block of SCORMEngineSettings.config. 

Controlling Access to Console 

Console is your gateway to SCORM Engine. It includes both information and controls that you 
probably don’t want the entire world to see, so we protect it with an authentication mechanism 
that uses a combination of a configuration key and a cookie. 
The very first time you try to access console, it will look like this: 

 
That password is governed by the ConsolePassword entry in your config. In the appSettings 
block, you’ll want an entry like this: 
<​add​ ​key​=​"​ConsolePassword​"​ ​value​=​"​YourChosenPassword​"​/> 
After you’ve authenticated successfully, console will set a cookie, and you will be able to bypass 
the login prompt and get straight to the dashboard. 
If you ever want to disable access via a given browser that has previously authenticated, you’ll 
need to delete the SECONSOLE cookie. 

Getting SCORM Engine Talking to Your Database 

In SCORMEngineSettings.config, we need to specify the connection details for the database set 
up in step 1. We’ll need to adjust the entries for DataPersistenceEngine and 
DatabaseConnectionString. In our example, we use these values: 
<!--​ Data Persistence ​--> 
<​add​ ​key​=​"​DataPersistanceEngine​"​ ​value​=​"​sqlserver​"​/> 



<​add​ ​key​=​"​DatabaseConnectionString​" 
value​=​"​server=localhost;uid=sa;pwd=notarealpassword;database=se2011.1.0​"​/> 
DataPersistanceEngine just specifies the DBMS being used (i.e., sqlserver, mysql, oracle, or 
db2). The DatabaseConnectionString needs the basics for a database connection: a hostname, 
a user ID, a password, and the name of the database where SCORM Engine will live (and 
where you should’ve run the DDL statements referenced earlier in this document). 
We are using SQL Server’s ​sa ​ user in our example. If you have a database user that you’ll be 
using for SCORM Engine, just make sure it’s in the connection string. 
Once you’ve completed this step, you should be able to play the SCORM Engine Console in 
Visual Studio and see a green ​passed​ in the Database Connection test on the dashboard. 

Making the Web Server and the Filesystem Get Along 

In order to get import working, you’ll need to make sure the web server has somewhere on the 
filesystem to put content files. There are four values you’ll want to set in order for SCORM 
Engine to be able to import successfully: 

WebPathToContentRoot — the URL (can be an absolute path without the 
protocol or server) to web-accessible folder where your content will live 
FilePathToContentRoot — the full filesystem file path to where the same content 
exists on the server 
FilePathToUploadedZippedPackage — the full filesystem file path to where 
zipped packages will be uploaded before being unzipped, imported, and moved 
to the content root 
UrlToUploadResources — the URL (can be an absolute path without the protocol 
or server) indicating where your upload mechanism lives 

In the case of the two filepaths, these need to be writable by the web server. 
Here’s how this section of the appSettings block looks in SCORMEngineSettings.config for our 
Vanilla integration: 
<!--​ Upload Import Control ​--> 
<​add​ ​key​=​"​WebPathToContentRoot​"​ ​value​=​"​/ScormEngineInterface/tools/test-courses​"​/> 
<​add​ ​key​=​"​FilePathToContentRoot​"​ ​value​=​"​C:\Documents and 
Settings\DevUser\Desktop\SCORM Engine Integration 
Template\ScormEngineInterface\tools\test-courses​"​/> 
<​add​ ​key​=​"​FilePathToUploadedZippedPackage​"​ ​value​=​"​C:\Documents and 
Settings\DevUser\Desktop\SCORM Engine Integration 
Template\ScormEngineInterface\tools\test-courses\uploads​"​/> 
<​add​ ​key​=​"​UrlToUploadResources​" 
value​=​"​/ScormEngineInterface/scripts/EngineUtils/UploadImportControl/​"​/> 
Once you’ve got these values set up in your configuraiton file with permissions to the directories 
such that the web server can write to them, you should have another ​passed​ test in the console 
dashboard. 



Implementing the Integration Layer 
As part of our delivery, we ship you four files that constitute your integration layer: 

a file containing your external configuration, i.e., information your LMS might 
want to use in SCORM Engine that is available to all integration functions 
(VanillaExternalConfiguration.cs in our example) 
a file containing your external package ID, the keys we’ll use to uniquely identify 
your content during import and launch (VanillaExternalPackageId.cs in our 
example) 
a file containing your external registration ID, the key(s) we’ll use to uniquely 
match a learner to a launch (VanillaExternalRegistrationId.cs in our example) 
a file containing your integration override functions (VanillaIntegration.cs in our 
example) 

We should have delivered you versions of each of the external files with the keys already 
populated, but you will always be able to see their status in console. 
And you’ll have stubs of the core override functions in your main integration file, but you will 
need to complete implementation of these overrides in order to have a complete integration 
between your LMS and SCORM Engine. 

When Worlds Collide: The SCORM Engine Override Functions 

The core override functions go in our main integration file, VanillaIntegration.cs: 
GetLearnerInformation()​ — gets the learner name and ID from the host LMS for 
storage in SCORM Engine 
AddExternalPackage()​ — required when you’re computing the package keys in 
the host LMS rather than passing them directly via the upload/import control 
RollupRegistration()​ — persists data to the SCORM Engine server at regular 
intervals (by default every 10 seconds) 
RollupRegistrationOnExit()​ — persists data only upon completion of the 
content (e.g., return to LMS) 
GetExternalPackageIdFromExternalRegId()​ — required to correctly identify 
content in integrations where the registration keys do not include the package 
keys 

As mentioned above, we provide stubs for each of these functions upon delivery of your 
integration code (including only definitions for the ones that matter for your integration; you 
might not need GetExternalPackageIdFromExternalRegId(), for instance), but you’ll likely need 
to customize them. For instance, if you’re tracking learning in your LMS, you’ll need the logic for 
storing that tracking information in your non-SCORM Engine LMS database to be included in 
your rollup override(s). 



Your First Import 
As a part of your SCORM Engine delivery, you’ll find an example import file (import.aspx) in 
/ScormEngineInterface/tools/console. This is how console will allow you to test your imports, but 
you can also model your integrated import process on it. It uses an upload/import control we 
provide that is available for you to use to integrate imports however you like. 
Here is how the import screen will look in console (and if you use our default upload/import 
control in your final integration): 

 
When you import, you might already have your external package ID available. If so, you can just 
pass that in to the import process. In console, if you’ve got a package ID already, you add it to 
the query string on import.aspx. E.g., 
import.aspx?package=CourseId|123 
Then reload import.aspx. After you reload, when you submit the import form it will be able to 
grab the package ID from the query string and complete the import. 
If you don’t have your external package ID at the time of import, and instead prefer that the 
import process generate one for you, we provide an overridable method called 
AddExternalPackage(). In this method, you can grab the title and description and whatever else 
you might need from the manifest and store them to your host system while also generating the 
package ID. 
We provide you with sample code for this method. If you’re not using it, we typically leave the 
code commented out and throw an exception to remind you that you need to pass in the 
package ID during the import process. 



Updating Content 

SCORM Engine comes with content versioning built in, so you can update a package in place 
without creating multiple parallel instances of your content. If you click Update Package under a 
course title in console dashboard, you’ll see a screen like this: 

 
You’ll notice there are only three options now. It doesn’t really make sense to create a package 
from scratch if you’re in the process of updating a pre-existing package. 

Your First Launch: Preview 
After you’ve successfully imported a course, even if you haven’t completed your core overrides 
for tracking learning, you’re ready to test a preview launch. 
To test a preview launch, click on the title of an imported course. You’ll see a link for “Preview.” 
Click it, and you should be able to launch the course without worrying about learner information 
or rollup. 



 
If you’ve gotten this far, you’re in very good shape. It’s sort of a metaphorical ​passed​. 

Your Second Launch: Tracking 
After you’ve completed your GetLearnerInformation() and rollup override(s), you should be 
ready to test launching again, this time with SCORM Engine tracking learning. 
To test a tracked launch, click the “New Registration” link beneath the title of one of your 
imported courses in the console dashboard. Now you should be able to track learning, which will 
include launch history and the ability to relaunch the content corresponding to this registration. 



 

Beyond Console: Two Integrations Enter, One Integration Leaves 
We provide SCORM Engine console to give you a snapshot of the functionality of your SCORM 
Engine setup and to serve as a sort of integration assistant. Getting it set up is almost like 
completing pre-integration. 
At this point, all that likely remains for you to have a SCORM-conformant LMS is to integrate the 
upload/import controls as tightly as you’d like with your LMS and to ensure that your production 
environment is configured successfully (assuming that you set up SCORM Engine in a 
development environment to begin with). 
If you started with console running in a dev environment, you’ll still be able to run it in your 
production environment since it will run anywhere a successful ScormEngineInterface 
installation lives. 

Questions? Comments? Political Statements? 



Was this tutorial helpful? 
Are you up and running and SCORM conformant? 
Did we miss anything? 
Was anything confusing? 
We want to know! 
Send us a note at ​support@scorm.com​. 
Thanks again for using SCORM Engine to deliver learning that counts! 

 

SCORM Engine Settings 

The SCORM Engine contains a number of configuration settings. These settings contain 

logistical information about how the SCORM Engine is deployed and they control how the 

SCORM Engine behaves. The SCORM Engine settings do not need to be changed frequently. 

They are typically only accessed during integration with another system and during 

deployment to new servers. If non-static values for any of these settings are needed, their 

values can be altered through the integration layer instead of being statically stored in the 

configuration file. The settings control the operation of both the SCORM Engine and of the 

Noddy LMS. 

Working with the SCORM Engine Settings 

The method for accessing and changing the SCORM Engine settings varies depending on the 

platform you are running (.NET or Java). 

.NET 

In a .NET installation of the SCORM Engine, the settings are contained in a file called 

"ScormEngineSettings.config". This file is located at the root of the SCORM Engine 

installation, in the directory above the "ScormEngineInterface" and the "NoddyLms" 

directories. 



 

The "ScormEngineSettings.config" file is a standard ​ASP.Net Configuration​ file. It is included 

by reference in the "​web.config​" files in the ScormEngineInterface and NoddyLms 

directories. The settings for the SCORM Engine can be stored in any valid and accessible 

ASP.Net configuration location. 

 

The "ScormEngineSettings.config" file is a standard XML file that can be edited in any text 

editor or XML editor. 

 

http://msdn.microsoft.com/en-us/library/aa719558.aspx
http://en.wikipedia.org/wiki/Web.config


Alternatively, recent version of IIS include an "Edit Cofiguration" button on the ASP.NET tab 

of the applications properties. This button brings up a GUI for editing application settings 

individually. 

 

IIS doesn't automatically detect changes made to the "ScormEngineSettings.config" file. In 

order to get the changes you make to be detected by IIS, you need to either: restart IIS or 

make a small change to both "web.config" files (one in the ScormEngineInterface directory 

and one in the NoddyLms directory) and resave them. IIS will pick up a change to the 

web.config files automatically. An easy way to get the changes picked up is to open the 

"web.config" files, type a character, delete the character and then re-save.  

Java 

In a Java installation of the SCORM Engine, the settings are contained in a file called 

"SCORMEngineSettings.properties". This file should be deployed to a location in the web 

applications' class path. 

 

The "SCORMEngineSettings.properties" file is a standard Java configuration file. This file is a 

standard XML file that can be edited in any text editor or XML editor. 



 

Depending on your Java Application Server, you may need to cycle the application in order 

for configuration changes to be picked up. 

The Settings 

The SCORM Engine settings can be broken up into eight groups: 

Integration class 

Data persistence 

URLs 

Upload import control 

Registration instance and package versioning 

Optional SCORM Engine features 

Debug settings 

Central / remote architecture 

Integration Class 

These two settings determine which class the integration factory will load. This class should 

be the concrete implementation of the integration interface that is designed to work with 

the current LMS (the integration layer). 

LogicIntegrationAssemblyName​ - The ​.NET assembly​ in which the integration class 

resides. The assembly name is the name of the DLL containing the code and often 

corresponds to the namespace of the class in which the integration class resides. This 

setting is not required for Java. 

Example: "RusticiSoftware.ScormEngine.VanillaIntegration" 

LogicIntegrationClassName​ - The fully qualified name of the actual integration class to 

load. Usually, this is the assembly name concatenated with with the class name. 

Example​:​ "RusticiSoftware.ScormEngine.VanillaIntegration.VanillaIntegration" 

Data Persistence 

The data persistence settings control how the SCORM Engine accesses the database. 

DataPersistenceEngine​ - The SCORM Engine supports many different data persistence 

options. This setting controls which of the supported options the SCORM Engine will use. 

The options are listed in the table below. 

http://msdn.microsoft.com/en-us/library/ms973231.aspx


Value Description 

"compactsqlserver" Connect to a ​Microsoft SQL Server CE​ database​. ​(.NET Only) 

"db2" Connect to a ​IBM DB2​ database. (.NET Only) 

"db2_zos" Connect to a IBM DB2 for z/OS (Mainframe). (.NET Only) 

"mysql" Connect to a ​MySQL​ database. 

"odbc" Connect to any database that supports an ​ODBC interface​. 
(.NET Only) 

"oracle" Connect to an ​Oracle​ database 

"oracle-not_optimized" Connect to an ​Oracle​ database without using the bulk 

persistence stored procedure. [DEPRECATED in v2009.1 - use 

the "oracle" setting instead] 

"ole" Connect to any database that supports an ​OLE interface​. (.NET 

Only) 

"plugin" Use a custom devloped data persistence mechanism. 

"sqlite" Connect to a ​SQLite​ database. (.NET Only) 

"sqlserver" Connect to a ​Microsoft SQL Server​ database.  

"sqlserver-not_optimized

" 

Connect to a ​Microsoft SQL Server​ database without using the 

bulk persistence stored procedure. [DEPRECATED in v2009.1 - 

use the "sqlserver" setting instead] 

  

DatabaseConnectionString​ - The connection string that the SCORM Engine will use to 

connect to the database. The value for this setting varied based on the platform you are 

running. 

In .NET, the value is an actual connection string. The ​format of the connection string​ will 

vary depending on the data persistence engine selected. Some examples of connection 

strings on various platforms are included in the table below. 

Data 

Persistenc

e Engine 

Example .NET Connection String 

SQL Server "server=localhost;uid=sa;pwd=password;database=ScormEngine" 

MySQL "Host=localhost:3006;UserName=root;Password=password;Database=ScormE

ngine;" 

Oracle "Data Source=oracledb.local;User 

Id=ScormEngine;Password=password;Integrated Security=no" 

IBM DB2 "Provider=IBMDADB2;Data 

Source=ScormEngine;UID=ScormEngineUser;PWD=password" 

In Java installations, this parameter is optional. If not value is provided, the SCORM Engine 

will use a pre-defined data source named "jdbc/ScormEngine". If you would like the SCORM 

Engine to use another named data source, simply include it's name as the value of this 

setting. 

Advanced Data Persistence Settings 

http://www.microsoft.com/Sqlserver/2005/en/us/compact.aspx
http://www-01.ibm.com/software/data/db2/
http://www.mysql.com/
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://www.oracle.com/technology/products/database/oracle11g/index.html
http://www.oracle.com/technology/products/database/oracle11g/index.html
http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://www.sqlite.org/
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
http://www.connectionstrings.com/


These settings are all optional and are only used used in advanced scenarios to accomodate 

varied data persistence options. The data persistence engine setting is essentially a shortcut 

to specify various combinations of pre-define data peristence classes and should be used 

instead of these settings unless an uncommon scenario is encountered. 

DataPersistanceAssemblyName​ (optional) - When using the "plugin" data persistence 

engine, this settings specifies the name of the assembly from which to load the data 

persistence plug-in class. This setting is not required for Java. 

Example: "RusticiSoftware.ScormContentPlayer.Logic" 

DataPersistancePersistClassName​ (optional) - When using the "plugin" data persistence 

engine, this setting specifies the name of the class within the DataPersistenceAssembly that 

handles persisting data to the database. This class contains the actual SQL (or other 

commands) for manipluating SCORM Engine data within the database. 

Example: "RusticiSoftware.ScormContentPlayer.Logic.SqlPersistImplementation" 

DataPersistanceRetrieveClassName​ (optional)- When using the "plugin" data 

persistence engine, this setting specifies the name of the class within the 

DataPersistenceAssembly that handles retrieving data from the database. This class 

contains the actual SQL (or other commands) for manipluating SCORM Engine data within 

the database. 

Example: "RusticiSoftware.ScormContentPlayer.Logic.SqlRetrieveImplementation" 

DataHelperAssemblyName​ (optional)- When using the "plugin" data persistence engine, 

this settings specifies the name of the assembly from which to load the data helper plug-in 

class. This setting is not required for Java. 

Example: "RusticiSoftware.ScormContentPlayer.DataHelp" 

DataHelperClassName​ (optional) - When using the "plugin" data persistence engine, this 

setting specifies the name of the class within the DataHelperAssembly that handles 

connecting to and interacting with the database. This class contains generic helper functions 

that abstract the process of connecting to an querying a specific database. 

Example: "RusticiSoftware.ScormContentPlayer.DataHelp.JdbcDataHelper" 

DataPersistanceUseStoredProcsIfAvailable​ (optional, default="true") - This setting 

modifies the behavior of the SQL Server and Oracle data persistence engines to use stored 

procedures or regular SQL when performing some functions. In general, this setting should 

not be modified. Possible values: "true" or "false". 

UseGuidAsObjectId​ - This setting allows the SCORM Engine to toggle between using 

integers and GUIDs as primary keys in its tables. Possible values: "true" or "false". 

DBMaxStringLength​ - This optional setting sets the maximum string length to allow 

through to be persisted in the database.  This applies to all strings passed to the database, 

including text fields. 

DatabaseTimeout​ - Value used by the default integration implementation specifying the 

timeout threshold for database operations. In seconds. 

DatabaseSchema​ - String value used by the default integration implementation specifying 

the schema name that should be prepended to table names. 

  

URLs 

The URLs specified in the SCORM Engine settings contain information about where the 

SCORM Engine was deployed and where it should make requests to. These settings allow for 

a lot of flexibility in how the SCORM Engine is deployed, in most situations however, they 

will all point to the single directory in which the SCORM Engine is deployed. 

Unless otherwise specified, the URLs can either be fully qualified (ex: 

"http://www.mylmsserver.com/ScormEngine/pagename.aspx") or, relative to the root of 



the web server on which the SCORM Engine is deployed (ex: 

"/ScormEngine/pagename.aspx"). 

Note: For simplicity, the file extension has been omitted from the page names included 

below. The file extension will either be ".aspx" for .NET deployments or ".jsp" for Java 

deployments. 

Note: As of v2009.1 of the SCORM Engine, URLs that specify a directory have the option of 

including or not including the trailing slash ("/"). 

ScormEngineUrl​ - When doing a basic installation of the SCORM Engine, this is the only 

URL setting that must be included. It is simple a URL to the root location of the SCORM 

Engine on the web server. If this setting is used, the rest of the URL settings can be 

omitted. 

Example: "/ScormEngine/ScormEngineInterface/" 

RemoteRequestProcessorUrl​ - URL to the "ProcessAiccRequest" file. This URL should be 

in the same domain that content is launched in. In a standard deployment, this setting 

should contain the same value as the "CentralAiccRequestProcesorUrl" setting, or it can be 

omitted. In a cross domain, central/remote deployment, this setting should point to the 

"ProcessAiccRequest" page in the SCORM Engine instance deployed to the content server. 

The URL should either be fully qualified, or relative to the location from which the content is 

lanched. 

Example: "/ScormEngine/ScormEngineInterface/ProcessAiccRequest.aspx" 

CentralAiccRequestProcessorUrl​ - URL to the "ProcessAiccRequest" file. This URL should 

be in the same domain that LMS resides in. In a standard deployment, this setting should 

contain the same value as the "RemoteAiccRequestProcesorUrl" setting. In a cross domain, 

central/remote deployment, this setting should point to the "ProcessAiccRequest" page in 

the SCORM Engine instance deployed to the LMS server and the URL should be fully 

qualified. 

Example: "/ScormEngine/ScormEngineInterface/ProcessAiccRequest.aspx" 

ScormResultProcessorUrl​ - URL to the "RecordResults" file. This URL should be in the 

same domain that the content resides in. 

Example: "/ScormEngine/ScormEngineInterface/RecordResults.aspx" 

CentralWebServiceUrl​ - URL to the "RuntimeDataExchange.asmx" file. This setting is only 

needed for cross domain, central/remote deployments. This URL should be an fully qualified 

URL to the "RuntimeDataExchange.asmx" file on LMS server. Currently this functionality is 

only available in the .NET implementation of the SCORM Engine. 

Example: 

"http://www.lmsserver.com/ScormEngine/ScormEngineInterface/RuntimeDataExchan

ge.asmx" 

ImportWebServiceUrl​ - URL to the "ImportService.asmx" file. This setting only applies to 

deployments using the SCORM Engine's import controls on a server other than the LMS 

server. This URL should be an fully qualified URL to the "RuntimeDataExchange.asmx" file 

on LMS server. Currently this functionality is only available in the .NET implementation of 

the SCORM Engine. 

Example: 

"http://www.lmsserver.com/ScormEngine/ScormEngineInterface/ImportService.asmx

" 

UrlToCentralLaunchPage​ - URL to the "defaultui/launch" page. This setting is only used 

by the Noddy LMS to determine how to redirect to the SCORM Engine when launching 

content. In a production deployment where the Noddy LMS is not deployed, this setting is 

not required. When creating a custom skin of the SCORM Engine during integration with an 

LMS, it may be helpful to change this setting to point to the launch page in the directory 

containing your skin (vs the "defaultui" directory) in order to test the functionality of your 

skin. 

Example: "/ScormEngine/ScormEngineInterface/defaultui/launch.aspx" 



RemoteLaunchPageUrl​ - URL to the ​directory​ containing the "deliver" page. This directory 

can vary when using custom skins of the SCORM Engine. When using a cross domain, 

central/remote deployment, this setting should be a fully qualified URL pointing to the 

server from which the content will be served. 

Example: "/ScormEngine/ScormEngineInterface/defaultui/" 

ScormEngineScriptsUrl​ - URL to the ​directory​ containing the "launch" page. This directory 

can vary when using custom skins of the SCORM Engine. When using a cross domain, 

central/remote deployment, this setting should be a fully qualified URL pointing to the 

server from which the content will be served. 

Example: "/ScormEngine/ScormEngineInterface/scripts" 

RedirectOnExitUrl​ - URL to which the SCORM Engine should redirect the user after the 

user exits the SCORM Engine. This URL should point to a location in the host LMS. 

Example: "/ScormEngine/NoddyLms/NoddyLms.aspx" 

  

StylesheetUrl​ - URL to the stylesheet used by the current SCORM Engine skin. 

Example: "/ScormEngine/ScormEngineInterface/defaultui/defaultstyles.css" 

UrlToLaunchHistoryControlResources​ - URL to the "UploadImportControl" directory that 

must be deployed with the launch history report web control. This directory contains the 

resources the user interface of the launch history report needs to display properly. Only 

applicable to applications using the launch history report web control. 

Example: "/ScormEngine/NoddyLms/UploadImportControl/" 

EngineUtilsHelperUrl​ - URL to the "EngineUtilsHelper" aspx or jsp (depending on your 

platform) that is used for displaying, Properties Editor, the Registration Report, and other 

ajax-enabled functionalites. This URL is optional and is only necessary if your 

EngineUtilsHelper file is not in the folder represented by the "ScormEngineUrl" setting. 

Example: "/ScormEngine/ScormEngineInterface/EngineUtilsHelper.aspx" 

Upload Import Control 

These settings are used by the web control that provides an interface for uploading content 

and importing it into the SCORM Engine. If this web control is not used by the LMS 

integrated with the SCORM Engine, then these settings are not required. 

WebPathToContentroot​ - HTTP path to the directory in which uploaded courses should be 

stored. This directory should map to the directory specified in "FilePathToContentRoot". 

Example: "/courses/" 

FilePathToContentRoot​ - File path to the directory in which uploaded courses should be 

stored. This directory should contain the files served by the path specified in 

"WebPathToContentroot". Individual courses will be placed in subdirectories within this 

directory. 

Example: "C:\inetpub\wwwroot\courses" 

FilePathToUploadedZippedPackage​ - Courses are uploaded as zip files. This setting 

specifies a temporary directory that zipped courses are uploaded to prior to their extraction 

into the directory specified in "FilePathToContentRoot". After extraction, zip files are deleted 

from this directory. 

Example: "C:\inetpub\wwwroot\courses\uploads" 

UrlToUploadResources​ - URL to the "UploadImportControl" directory that must be 

deployed with the upload import web control. This directory contains resources the user 

interface of the upload control needs to function properly. 

Example: "/ScormEngine/NoddyLms/UploadImportControl/" 



UrlToLetsiRtwsEndpoint -​ URL to the LETSI RTWS endpoint which will be appended in an 

initial browser request for a LETSI RTWS enabled package as the LETSI_RTWS_URL. Only 

necessary if using the RTWS functionality. 

Registration Instance and Package Versioning 

These settings control how and when a new versions of packages and registrations are 

created. A version of a registration is called an "instance". 

CreateRegistrationIfNeeded​ - When the SCORM Engine is launched with an external 

registration id that does not already exist, this setting controls whether a new registration is 

created for that id (setting="true") or if an error is thrown (setting="false"). This setting 

should be set to "false" only when SCORM Engine registrations are pre-created by the LMS 

via SCORM Engine API calls. Possible values: "true" or "false". 

WhenToRestartRegistration​ - Controls the logic that is used to determine if a new 

instance of a registration should be created on launch. 

Setting Value Behavior 

"1" Never create new registration instances. 

Always relaunch the registration using the 

existing set of tracking data. 

"2" Create a new registration instance if there is 

a newer version of the package being 

delivered and the current registration 

instance is completed. 

"3" Create a new registration instance 

whenever there is a newer version of the 

package being delivered. 

"4" Create a new registration instance 

whenever the user launches a registration 

that has previously been completed. 

"5" Create a new registration instance 

whenever the user launches a registration 

that has previously been satisfied. 

"6" Create a new registration instance if there is 

a newer version of the package being 

delivered and the current registration 

instance is satisfied. 

IsPackageVersioningEnabled​ -When the SCORM Engine's import routines are called with 

an external package id that already exists, this setting controls whether a new package 

version is created or whether an error is thrown. Possible values: "true" (create new 

package versions) or "false" (throw an error). 

SystemHomepageUrl​ - Get the absolute URL of the cannonical, permanant, homepage for 

this system. Ideally this really is the homepage a user would use to access the system, but 

this must be cannonical and permanant, that is: it is a single URL the system can be 

identified by.  Used by Tin Can when creating Actors from users in the system. 

Optional SCORM Engine Features 



These settings control the behavior of some optional SCORM Engine features that might not 

apply to all installations. 

2004Enabled​ - Tells the SCORM Engine whether this installation has the capability to 

deliver SCORM 2004 content. This setting does not actually affect the SCORM Engine's 

ability to deliver SCORM 2004 content, instead it just tells the SCORM Engine whether or 

not to issue a warning message when the user attempts to import SCORM 2004 content. 

Possible values: "true" (SCORM 2004 support is enabled) or "false" (SCORM 2004 support is 

not enabled). 

SSPEnabled​- Tells the SCORM Engine whether this installation has the capability to deliver 

SSP content. This setting does not actually affect the SCORM Engine's ability to deliver SSP 

content, instead it just tells the SCORM Engine whether or not to issue a warning message 

when the user attempts to import SSP content. Possible values: "true" (SSP support is 

enabled) or "false" (SSP support is not enabled). 

SSPSizeAllocation​ - When using SSP, this setting determines the maximum amount of 

storage that a given course can request for a given registration. This setting is an integer 

that specifies a number of bytes. 

Example: "1048576" (corresponds to 1 MB of storage) 

UseCompressedJavascript​ - The SCORM Engine sends a lot of JavaScript code to the 

user's browser to implement all of the required SCORM functionality. To speed up the 

loading process, by default, this code is compressed and consolidated. This setting controls 

whether the compressed version of the code is delivered to the browser (the best setting for 

production environments) or whether the raw, uncompressed code is delivered to the 

browser (useful for development and debugging). Possible values: "true" (deliver 

compressed code) or "false" (deliver raw code) 

AiccSessionIdExternalConfigExclusions​ - If the AICC Url, with SID included, is too long, 

this parameter can be used to exclude non-essential external configuration parameters from 

serialization. 

AiccUseLegacySidFormatForExistingRegs​ - The SCORM Engine is now using GUIDs for 

the AICC session ID (backed by the ScormAiccSession table). However, for continuity, we 

need existing registrations to continue to use the long tilde-delimited format.  This 

parameter provides the ability to override that logic and force even existing registrations to 

use the GUID format. 

EnableExternalIdEncryption​ - Value that determines if external IDs should be encrypted 

by default. 

IntegrationEncryptionPassword​ - String used to generate the encryption key for 

securing URLs passed between the web services integration and the SCORM Engine. This 

should be set to a long random string. 

SMTP_Host​ - Host name of the SMTP server used for email functionality.  Used by the 

PENS system. 

SMTP_Port​ - Port number of the SMTP server used for email functionality.  Used by the 

PENS system. 

SMTP_User​ - User name used for authentication of the SMTP server used for email 

functionality.  Used by the PENS system. 

SMTP_Password​ - User password used for authentication of the SMTP server used for 

email functionality.  Used by the PENS system. 

SMTP_UseSecureConnection​ - Whether to use a secure connection when communicating 

with the SMTP server used for email functionality.  Used by the PENS system. 

Pens_Mail_Receipt_From​ - The address that the PENS email receipts will be from. 

Pens_Mail_Alert_From​ - The address that the PENS email alerts will be from. 

Pens_Process_Sync​ - Whether PENS request should be processed synchronously 

(recommended for troubleshooting only). 

Pens_ByPass_SSL_Validation​ - If set to true, PENS will ignore SSL certificate validation 

failures.  Recommended for testing purposes only. 



RtwsSessionTimeoutHours​ - Timeout of LETSI RTWS session in hours. RTWS servers 

may leave sessions enables indefinitely and should leave them enabled for at least 24 

hours. 

TinCanRootAccount - ​​ This is a colon-delimited name and password like "admin:mypass" 
which can be used to authenticate against the TCAPI with administrator rights.  This parameter 
is required to use the built-in console's Tin Can statement viewer. 
ConsolePassword​ - Password to gain access to the /tools/console/console.aspx page which 
contains some SCORM Engine diagnostic tools and hooks to the Tin Can Statement viewer. 
Debug Settings 

These settings control the amount of debugging information that is recorded by the SCORM 

Engine. There isn't much of a performance penalty for recording this information, so we 

recommend that these settings typically be left at their default values to assist with 

troubleshooting. In this context, "audit" means recording basic debug information about 

what happend and when. "Detailed" means recording the precise details of how each action 

was executed. In order for the "detailed" information to be properly recorded, the "audit" 

level information must also be captured. 

KeepAuditLog​ - Determines whether server-side debug information is captured at the 

audit level. This log tracks which server-side pages where requested and when. Possible 

values: "true" (record information) or "false" (don't record information). 

KeepDetailLog​ - Determines whether server-side debug information is captured at the 

detailed level. This log tracks the execution of server-side pages. Possible values: "true" 

(record information) or "false" (don't record information). 

KeepSoapLog​ - When used a cross domain, central/remote architecture, this setting 

determines if the exact contents of SOAP web services calls between the central and remote 

instances are logged. Possible values: "true" (record information") or "false" (don't record 

information). 

DebugControlAudit​ - Determines whether client-side information about the overall 

execution of the SCORM Engine is recorded at the audit level. "Control" information tracks 

what was launched when as well as the communication with the server. Possible values: 

"true" (record information) or "false" (don't record information). 

DebugControlDetailed​ - Determines whether client-side information about the overall 

execution of the SCORM Engine is recorded at the detailed level. Possible values: "true" 

(record information) or "false" (don't record information). 

DebugRteAudit​ - Determines whether SCORM runtime calls from SCOs are logged are 

recorded to the client-side debug log at the audit level. Possible values: "true" (record 

information) or "false" (don't record information). 

DebugRteDetailed​- Determines whether SCORM runtime calls from SCOs are logged are 

recorded to the client-side debug log at the detailed level. Possible values: "true" (record 

information) or "false" (don't record information). 

DebugSequencingAudit​ - Determines whether the execution of the SCORM sequencing 

logic is recorded to the client-side debug log as the audit level. Possible values: "true" 

(record information) or "false" (don't record information). 

DebugSequencingDetailed​ - Determines whether the execution of the SCORM sequencing 

logic is recorded to the client-side debug log as the detailed level. Possible values: "true" 

(record information) or "false" (don't record information). 

DebugSequencingSimple​ - Determines whether the execution of the SCORM sequencing 

logic is recorded to the client-side debug log in the "simple" format when available. Possible 

values: "true" (record information) or "false" (don't record information). When true and 

enabled, this setting will disable DebugSequencingAudit and DebugSequencingDetailed. 

DebugLookAheadAudit​ - The SCORM Engine executes "look ahead" runs of the SCORM 

sequencer whenever pertinent data is changed in order to determine whether or not to 

enable/disable/show/hide the various navigational controls available to the user. This 



setting determines if these executions are recorded to the client-side debug log at the audit 

level. Possible values: "true" (record information) or "false" (don't record information). 

DebugLookAheadDetailed​ - Determines whether the execution of the look ahead SCORM 

sequencing is recorded to the client-side debug log as the detailed level. Possible values: 

"true" (record information) or "false" (don't record information). 

DebugIncludeTimestamps​ -Determines whether or not the client-side debug logs should 

include time stamps indicating when audit-level events occur. Possible values: "true" 

(record time stamps) or "false" (don't record time stamps). 

Logging​ - Both the .Net and Java implementations of the SCORM Engine include the 

capability to integrate with a server-side logging framework. The SCORM Engine uses 

Apache's ​log4net​ and ​log4j​ to store rolling logs of server-side activity on the file system. 

These logging systems have many settings that are stored in the web.config file in .Net and 

the log4j.properties file in Java. Refer to the appropriate logging system's website for 

information on configuring these systems. (Note that to use the log4net system, the 

"NETWORK SERVICE" user will need to have read/write permissions to the logging 

directory.) 

Central / Remote Architecture 

These settings apply to the use of the cross domain, central/remote architecture. 

UseCrossDomainWebServices​ - Determines whether or not the cross domain, 

central/remote architecture is in use. If this setting is set to "true", requests to persist data 

will be forwarded to the location specified in the URLs specified in the 

CentralAiccRequestProcessorUrl and CentralWebServiceUrl settings. If this setting is set to 

"false", requests will be directly processed. Possible values: "true" or "false". 

WebServiceRetries​ - If using web services, this setting determines the maximum number 

of times the remote instance will attempt to contact the central instance in the event of an 

error. Once the maximum number of retries has been reached, the remote instance will 

assume that communiation with the central instance has been lost and notify the user that 

an error has occured. This value is specified as an integer. 

Example: "3" 

WebServiceRetryInterval​ - If the remote instance needs to retry its communication with 

the central instance, this setting determines how long the remote instance will wait before 

resending the request. This value is specified in milliseconds. When using a central/remote 

architecture, the maximum time that could be spent retrying requests (calculated as 

WebServicesRetries * WebServiceRetryInterval) should be significnatly less than the default 

CommCommitFrequecy package property to prevent the remote server from being 

overloaded in the event of a failure of the central server. This maximum time value also 

needs to be less than the ASP.NET / JSP page timeout value. 

Example: "5000" (corresponds to 5 seconds) 

UseImportWebServices​ - Determines whether or not import controls should use web 

services to invoke import on a central server. Possible values: "true" or "false" 

SCORM Engine Launch Parameters 

SCORM Engine Version: 2012.1 

Last Updated: Aug 2, 2012 

http://logging.apache.org/log4net/index.html
http://logging.apache.org/log4j/index.html


When launching the SCORM Engine, there a several parameters that can be passed to it via 

the querystring. These parameters tell the SCORM Engine which course to load, how to 

track the learner's progress and how the course should behave. 

Parameter Name Possible Values (should be URL encoded) 

"configuration" A serialized external configuration object 

"registration" A serialized external registration id 

"package" A serialized external package id 

"manifestDirPath" A valid file path or HTTP path 

"webPath" A value HTTP path to a directory 

"tracking" "true" or "false" 

"forceReview" "true" or "false" 

"regForCredit" "true" or "false" 

"cc" CultureCode to choose a delivery language.  (e.g., 'en', 'fr'. Note, 

this functionality is not turned on by default.) 

"startSco" An Item Identifier that identifies a SCO in the manifest. 

Configuration 

The "configuration" parameter contains a serialized version of the specific integration's 

external configuration object. This parameter is always required to be present, but usually 

does not have to contain a value. The external configuration object is used to vary the 

behavior of the SCORM Engine in the integration layer. Passing in a string representation of 

this object at launch, will cause an instance of the specific integration's external 

configuration object to be instantiated and passed into the integration layer whenever an 

integration function is called. 

Registration 

The "registration" parameter contains a identifier that should be associated with the SCORM 

tracking information for this course launch. This is the "external registration id". The format 

of the registration parameter should be a serialized version of the specific integration's 

external registration id object. If the external registration id specified in this parameter does 

not already exist in the SCORM Engine, then by default a new registration will be created 

(although this behavior can vary based on the integration layer and the 

"CreateRegistrationIfNeeded" SCORM Engine setting). If the specified external registration 

id does exist, then that registration will be resumed and the tracking data from any previous 

attempts will be restored. 

Package 

The "package" parameter contains an external package id identifying a package that has 

already been imported into the SCORM Engine. If no "registration" parameter is passed in, 

then the package identified in this parameter will be launched in a preview mode with no 



tracking. If a "registration" parameter is passed in and a new registration needs to be 

created because the external registration id does not exist, then the package identified by 

this parameter will be associated with the newly created registration. If the "registration" 

parameter is passed in and there is an existing registration, then the "package" parameter 

is ignored. 

Registration Parameter Package Parameter Action 

Not Included Included Package is launched in 

preview mode 

Included, no matching 

registration exists 

Included New registration is created 

with specified package 

Included, matching 

registration does exist 

Included Existing registation is 

launched, package 

parameter is ignored. If the 

registration id does exist, the 

package parameter is not 

required. 

ManifestDirPath and WebPath 

The "manifestDirpath" and "webPath" parameters are used in conjunction with one another. 

They enable the SCORM Engine to launch a course that has not yet been imported. The 

course's manifest is parsed on the fly and the course is launched in a preview mode with no 

tracking. The "manifestDirPath" parameter should contain either a file path (accessible to 

the server on which SCORM Engine is deployed) or an HTTP location of the course's 

descriptor file (usually the imsmanifest.xml file). When launching a course that has not yet 

been imported, you also need to pass in the "webPath" parameter to tell the SCORM Engine 

where the course resides. The "webPath" parameter is an HTTP path to the root of the 

course (usually the directory where the manifest resides). 

Tracking 

The "tracking" parameter provides a way to launch a registration without saving any of the 

tracking data associated with the course. When the "tracking" parameter is provided set to 

"false", the SCORM Engine will still accept all of the SCORM data sent to it by the content, 

but it will only persist it for the duration of the session. When the learner exits the course, 

all of the new data is discarded and the original state is preserved. This mode is useful for 

allowing learner's to review content that has already been completed to ensure that the 

record of their completion is not overwritten. If not included, the default value for this 

paramter is "true". 

ForceReview 

When set to "true", the "forceReview" parameter ensures that the data model element for 

mode ("cmi.mode" or "cmi.core.lesson_mode") is always set to "review". This setting is 

often used in conjunction with the "tracking" setting to provide learners an opportunity to 



review a course after it has been completed. If not included, the default value for this 

paramter is "false". 

RegForCredit 

The "regForCredit" parameter is used when the SCORM Engine creates a new registration 

upon launch. If the "regForCredit" parameter is passed in and set to "false", the SCORM 

Engine will create a new regisration with the data model element for credit ("cmi.credit" or 

"cmi.core.credit") set to "no credit". This setting is useful for lanching courses that should 

be tracked but that don't "count" for anything. If not included, the default value for this 

paramter is "true". 

CC 

The "cc" parameter can be used by a client integration to force the delivery language to a 

particular culture code, e.g., 'en', 'fr', via the launch string. This functionality is not enabled 

by default. To make use of this parameter the client should override the SetCulture() 

integration method in the integration layer. 

StartSCO 

If provided, this parameter identifies a SCO that the SCORM Engine should launch first. If 

not provided, the SCORM Engine will either launch the first SCO (for new registrations) or 

the SCO from which the learner suspended a previous attempt (for previously attempted 

registrations). Note that these default SCOs can be altered by SCORM 2004 sequencing 

rules in the content. The format of this parameter is a string representing the Item identifier 

associated with the SCO to be launched in the manifest. Note that if the manifest contains 

SCORM 2004 sequencing rules, it might not always be possible to launch the specified SCO 

(if for instance it's prerequisites are not met). In this case, the learner will be prompted with 

a message to make another selection. 

Serializing and Encoding 

All values must be properly escaped (or "​URL Encoded​") when they are included in the 

query string. It is important not to double encode the values. All common programming 

languages include a library function for properly escaping values to be placed in a 

querystring. For static values that do not change, it can be helpful to use a ​tool​ to perform 

the one time encoding. 

When passing an external package id, external registration id or external configuration id to 

the SCORM Engine these objects must be represented in their serialized state. The number, 

type and name of the properties contained in each of these of these objects in unique to 

each integration. Often, there is just one property, in which case the serialized version of 

the object is just the value for that property. However, in cases where there is more than 

one property, the serialized form of the object is a series of name value pairs separated by 

delimiters. By default, the delimiter that is between the name and value is a pipe character 

http://en.wikipedia.org/wiki/Percent-encoding
http://www.albionresearch.com/misc/urlencode.php


("|") and the delimiter between a set of names and values is an exclamation mark character 

("!"). Note that these defaults will vary based on the version of the SCORM Engine and can 

be different for each integration. 

For example, if an external registration id is composed of two fields, userName and 

courseId, then a serialized external registration id might look like this: 

userName|joeuser!courseId|42​That value indicates an external registration id with a 

value for userName of "joeuser" and a vale for courseId of "42". When passing the serialized 

value into the SCORM Engine, the entire serialized value needs to be URL Encoded. Note 

that "!" does not need to be escaped and that the escaped represenation of "|" is "%7c". 

Once escaped, the above example would look like: 

userName%7cjoeuser!courseId%7c42​The Noddy LMS can simplify the process of 

created serialized and escaped object values. When creating new registrations, the Noddy 

LMS will display the proper launch URL. Since the Noddy LMS can be configured to use your 

specific integration, it is easy to simply copy and paste values into your code. 

 

Common Configurations 

Launch a registration "normally" 

Parameter Name Value to pass in 

"configuration" A serialized external configuration object if used by your 

integration. 

"registration" A serialized external registration id 

"package" A serialized external package id 

"manifestDirPath" Not included 

"webPath" Not included 

"tracking" Not included 



"forceReview" Not included 

"regForCredit" Not included 

Launch a completed registration in review mode with no changes 

to the tracking data 

Parameter Name Value to pass in 

"configuration" A serialized external configuration object if used by 

your integration. 

"registration" A serialized external registration id 

"package" Not included 

"manifestDirPath" Not included 

"webPath" Not included 

"tracking" "false" 

"forceReview" "true" 

"regForCredit" Not included 

Launch an imported course in preview mode with no tracking 

Parameter Name Value to pass in 

"configuration" A serialized external configuration object if used by your 

integration. 

"registration" Not included 

"package" A serialized external package id 

"manifestDirPath" Not included 

"webPath" Not included 

"tracking" Not included (only relevant if a registration is passed in) 

"forceReview" Not included 

"regForCredit" Not included 

Launch a course that does not "count" for credit, but should still be 

tracked 

Parameter Name Value to pass in 

"configuration" A serialized external configuration object if used by your 

integration. 

"registration" A serialized external registration id 

"package" A serialized external package id 

"manifestDirPath" Not included 



"webPath" Not included 

"tracking" Not included 

"forceReview" Not included 

"regForCredit" "false" 

Launch a course directly from a manifest that has not yet been 

imported 

Parameter Name Value to pass in 

"configuration" A serialized external configuration object if used by your 

integration. 

"registration" Not included 

"package" Not included 

"manifestDirPath" File path to manifest 

"webPath" Web path to course directory 

"tracking" Not included 

"forceReview" Not included 

"regForCredit" Not included 

Mode and Credit 

The SCORM runtime data model contains two elements that indicate the context in which a 

course was launched. This context is affected by the parameters that are passed into the 

SCORM Engine on launch. The "mode" data model element indicates that the course was 

launched either in a "normal", "review" or "browse" mode. The "credit" data model element 

indicates whether or not the course is being taken for credit. 

Mode: 

By default, when a course is launched with a registration id, the "mode" will be 

"normal". 

By default, when a course is launched without a registration id, the "mode" will 

be "browse" 

If the "forceReview" parameter is included with a value of "true", then the 

"mode" will always be "review". 

Note: per the SCORM specification, "mode" can also change to "review" after a 

SCO is completed 

Credit: 

By default, when a course is launched with a registration id, the "credit" value 

will be set to "credit". 

When a course is launched with a registration id and the "regForCredit" 

parameter is passed with a value of "false", the "credit" value will be set to "no 

credit". 

When a course is launched without a registration id, the "credit" value will 

always be set to "no credit".​Published by ​Google Sheets​–​Report Abuse​–Updated 
automatically every 5 minutes 

https://docs.google.com/a/scorm.com/spreadsheets/?authuser=0&usp=sheets_web
https://docs.google.com/a/scorm.com/abuse?id=1X0cwNhOv_nQ1Iti7NwmzMU7yE6Pb4Tc2sTa871C2LWI


 

SCORM Engine Package Properties Reference 

Please see this .pdf for the package properties reference. 
 

SCORM Engine Scalability 

SCORM Engine Version: 2012.1 
Last Updated: Aug 2, 2012 

Introduction 

Clients often ask us “How many users can the SCORM Engine can support?” Our answer               
usually falls somewhere between “a lot” and “it depends”. Both are true, but not very helpful.                
This document will shed some more light on the empirical data we have about the scalability of                 
the SCORM Engine as well as the results of some measured stress testing we recently performed. 

Why is this such a hard question? 

There are many factors that affect the load on the server when delivering online training through                
the SCORM Engine. All of them can greatly impact scalability. 

Deployment Variability 

The SCORM Engine is designed to be tightly integrated into external LMS systems, every one of                
which is different. Most significantly, the LMS’s we have integrated with use just about every               
application stack on the market. The SCORM Engine is deployed on Windows servers, Linux              
servers and even the occasional Mac server. It runs on top of SQL Server, Oracle, MySql, DB2                 
and a few other databases. These environments are sometimes replicated, sometimes clustered,            
sometimes load balanced and all of them have different authentication and security requirements. 

Integration Variability 



The SCORM Engine has a very flexible interface with which it ties into a client’s LMS. How                 
this interface is used and configured can have a significant impact in the server side load. For                 
instance, the amount of data that is communicated and shared across systems will have a               
measurable impact on performance. The method in which this data is transmitted also comes into               
play; do the systems communicate via SOAP requests, through direct API calls, through access              
to a shared database or something else? 

Course Variability 

SCORM offers allows for a lot of flexibility in how courses are put together. There is a big                  
difference in the amount of data that the SCORM Engine must track for a single SCO course                 
verses a course with one hundred SCOs. Within each SCO, there can also be a huge variation in                  
the amount of data that the SCO chooses to record and track. Some SCOs do nothing more than                  
indicate that they are starting and completing while others will track the learners’ progress in               
detail (including things like how they answer questions and how they are progressing on various               
learning objectives). How courses use SCORM 2004 sequencing and how large the actual             
courseware files are will also impact performance. 

Usage Variability 

Different communities of practice will experience different usage patterns of their LMS. Some             
communities will have users that take all their training in clumps while others will have users                
who only access the system in short bursts. Some systems are mostly accessed during business               
hours while others are active twenty-four hours a day. Systems that support supplemental             
material in a classroom may have many users all start a course simultaneously, while more               
asynchronous systems will have users starting and stopping throughout the day. 

Empirical Evidence 

Empirically we know that the SCORM Engine can scale quite well. Several of our clients operate                
very large LMS instances in which the SCORM Engine performs admirably. One client in              
particular tracks over 1.5 million users and routinely processes over 50,000 course completions             
in a day. Other clients serve entire military branches from server farms distributed throughout the               
globe. Of course there have been occasional hiccups, but by and large the SCORM Engine               
handles these loads quite well. 
Architecturally we designed the SCORM Engine for scalability from the start. One of the more               
significant architectural decisions we made was to push the SCORM sequencer down to the              
browser. Interpreting the SCORM 2004 sequencing rules can require a fair amount of             
processing. In a conventional SCORM player, in between every SCO, data must be sent to the                
server, undergo extensive processing and then be returned back to the client. In the SCORM               
Engine, all of this processing happens locally in the browser, eliminating a significant load on               
the server as the course is delivered. Typically the bulk of the server-side load happens when a                 



course is launched as all of the required course data is retrieved from the database and sent to the                   
browser. During course execution, incremental progress data is periodically sent to the server             
resulting in relative small hits to the server as this data is persisted to the database. 

Stress Testing Results 

In February of 2008, we conducted a performance test to get benchmark numbers reflecting the               
scalability of the SCORM Engine as represented by the number of concurrent users accessing the               
system. The intent of this test was to establish a benchmark of scalability on a simple                
representative system which can be used to roughly infer the performance of a more              
comprehensive system. As mentioned above, there are a number of variables that contribute to              
the scalability of a production system, any one of which can create a bottleneck or stress a                 
system. We highly recommend adequate stress testing in a mirrored environment prior to             
deployment. 

Methodology 

To simulate user activity within the SCORM Engine, we began by selecting four diverse courses               
to use in our testing. The courses included: 

A single SCO, flash-based SCORM 1.2 course 
A short SCORM 2004 course that reports detailed SCORM runtime data to the 
LMS 
A simple sample SCORM 2004 course that performs simple sequencing 
An advanced SCORM 2004 course that makes extensive use of sequencing 

We then captured the client-server HTTP interactions of a typical user progressing through each              
course. This data was massaged into a script that would accurately simulate many users hitting               
the system and updating their own individual training records. 
Our test was set up on a dedicated server farm consisting of a single central LMS server and two                   
clients from which the user requests were made using The Grinder load testing software. The               
LMS server has the following specifications: 

Processor​: Intel Pentium D 3.00 GHz 
RAM​: 2 GB 
Disk​: 130 GB 
Operating System​: Windows Server 2003 Enterprise Edition, Service Pack 1 
Web Server​: IIS v6.0 with ASP.NET 1.1.4322 
Database​: SQL Server 2005 
SCORM Engine​: Alpha version of 2008.1, configured to persist data every 10 seconds             
and rollup minimal data to an external system 

The two client machines have similar specifications. If you’re not a numbers person, you can               
think of it this way, these were the cheapest servers we could buy from Dell in the summer of                   



2007, with Microsoft software typical of the day. All machines were directly connected to one               
another on a gigabit switch. 
Simulating concurrent users proved to be trickier than expected due to the need to stagger the                
start of each user simulated user’s progress through the course. Our solution was to start the                
desired number of users at randomly spaced intervals over a period of 20 minutes. Since some                
users would complete their course in less than 20 minutes, each user was set to start the course                  
again after completing it. After allowing 20 minutes to get up to full load, we measured system                 
performance over the course of 10 minutes to get an accurate feel for how the system performed                 
under load. 
During that 10 minute period, we monitored the following metrics: 

Processor Utilization – Percentage of available processor time used by the 
application 
Committed RAM – Percentage of available RAM used by the application 
Wait Time – The amount of time the HTTP requests waiting in a queue before they 
were processed. 
Execution Time – The amount of time it took to actually process each web request 
once it reached the front of the queue 

Note that we did not monitor bandwidth utilization. The reason for this decision is that typically                
the bandwidth consumed by the SCORM Engine pales in comparison to the bandwidth used by               
the actual training material. Thus we did not think bandwidth relevant to a discussion on the                
scalability of the SCORM Engine; however it could play a significant role in the scalability of a                 
production LMS system. 

Results 

Our intent was to run these tests and continually increment the number of concurrent users until                
either a resource was constrained or the average server response time exceeded one second. Both               
events seemed to happen around the same time at about 1000 concurrent users. 



 
As you can see in the results above, processor utilization seems to be the constraining resource in                 
this system configuration. There is a linear relationship to processor utilization and the number              
of concurrent users until the processor utilization is maxed out at around 90%. RAM utilization               
increases only slightly with load. Failure begins to occur as the processor becomes overwhelmed              
and HTTP requests begin to get stacked up in a queue waiting for the processor to become                 
available. 
We also analyzed the server load as users progress through a course. The logarithmic trend line                
in the graph below clearly shows the initial front end load (seen by the spike in the first request)                   
followed by a relatively steady load as the course progresses. 



 

Conclusions 

A single server of modest horsepower can handle a concurrent user load of approximately 1000               
users. Making some assumptions, we can get a rough idea of how many total system users this                 
represents. Assume that a user will take a SCORM course once a week (probably an optimistic                
assumption). Assume that each SCORM course lasts one hour and that all training is evenly               
distributed during a 12 hour window each day. That means that each system user consumes one                
hour out of 60 available every week (assuming a 5 day week). If 1000 users can access the server                   
at any given moment, we roughly have 60,000 available hours. Since each user consumes              
roughly one hour, theoretically this server could support an LMS with 60,000 registered users.              
Obviously these calculations are rough and don’t allow for spikes in usage, but they at least                
provide an estimate from which to begin. 

Update - July 2009 

In version 2009.1 of the SCORM Engine we made a change to significantly improve scalability. 
Specifically, we removed the UpdateRunTimeFromXML stored procedure. This stored 
procedure handled the updating of all run-time progress data in one large database call. This 



increases the efficiency of each run-time update by reducing the number of individual database 
calls. Under light load, this procedure is rather efficient. Under very heavy load, this procedure 
was found to cause resource contention, leading to slower performance and even deadlocks. 
What was designed as a performance optimization actually turned into a performance bottleneck, 
thus we have removed this stored procedure from the SCORM Engine. This change can usually 
be retrofitted into prior versions of the SCORM Engine by making a simple configuration 
change. Please contact us if you would like help changing your system. 

SCORM Engine Minimum Requirements 

SCORM Engine Version: 2012.1 

Last Updated: May 21, 2012 

  

The SCORM Engine is designed to be deployed in a wide variety of configurations. Listed 

below are the basic requirements for using the SCORM Engine. 

  

A web server capable of running server-side code. Currently we support: 

Microsoft IIS – must be configured to run ASP.NET using the .NET 

runtime version 3.5 or higher 

A Java application server (such as Apache Tomcat, WebSphere®, JBoss® 

and WebLogic®) running J2EE 1.4 or higher with J2SE 5.0. 

  

A relational database. Currently we support: 

SQL Server 2000 and higher 

Oracle 8 and higher 

MySQL 5 and higher 

Other ODBC accessible platforms such as DB2 and OpenBase 

Cloud storage - Amazon S3, Amazon SimpleDB and memcached 

No database, simply persist information in XML files (not recommended 

for production web environments) 

  

A computer – Your hardware requirements will vary greatly depending on 

many factors, most notably your expected user base and configuration from 

above. In our development environment, we have tested on the following 

“minimum” system and the SCORM Engine behaves normally under small load. 

See this ​document​ for information on scalability. 

Windows 2000 Server SP 4 

Intel Pentium 4 1.8Ghz CPU 

256 MB RAM 

30 GB Hard drive 

  

For development and integration, it is often necessary to be able to view and 

modify source code. When working with .Net it is helpful to have Visual 

Studio.Net 2005 installed (with SP1 and the web application project type 

enabled). When working with Java, it is helpful to have Eclipse 3.2.2 or higher. 

Should you not have access to these tools, our consultants can usually create 

any necessary code on their computers. 

  

Other helpful items 

http://docs.google.com/View?id=dcb7m9mj_55gxv4msd5


Administrative access to the servers is often quite helpful in resolving 

any permissions related issues after deployment 

For remote installations (or for technical support after an onsite 

installation), access to screen sharing software greatly simplifies matters. 

Rustici Software can provide this software, however, for it to be useful, 

we need to ensure that your firewall allows it to operate. 

  

On the client side, all that is required is a web browser. No plug-ins are 

needed, nor is Java support required. When using Microsoft Internet Explorer 

before IE 7, ActiveX controls need to be enabled to facilitate the user of the 

XmlHttp object. Note, the XmlHttp object is not an custom ActiveX control, but 

rather an object built into all modern browsers. The following browsers are 

currently supported: 

Microsoft Internet Explorer 5+ 

Firefox 1+ 

Netscape 7.1+ 

Safari 1.2+  

Chrome 

Updating Your SCORM Engine for .Net 

SCORM Engine 2010.1 and higher 

Between major releases of the SCORM Engine we may make point releases that fix bugs 

and add small pieces of functionality that are needed by our clients.  When you update your 

SCORM Engine implementation to one of these point releases we recommend that you 

follow these instructions so that we can continue to support you easily. 

If you have any questions about these instructions, or you think they are not optimal for 

your deployment scenario, then please contact us and we will help you through the upgrade 

process. 

The SCORM Engine interface is a web application that is customized for our clients by adding 

a custom Client Integration dll to its bin folder and configuring its web config settings 

through the SCORMEngineSettings.config file. We test our configurations with all files at the 

same code level so we encourage you to think of the files in the SCORM Engine directory as 

a single unit, despite the fact we may be providing a patch that only affects a handful of 

JavaScript files. Some updates may include database scripts for schema or stored procedure 

changes but we will explicitly call out if/when that is necessary. The standard upgrade 

instructions depend on your deployment scenario: 

Single SCORM Engine Web Application, default user 

interface 

In the most common deployment scenario where the SCORM Engine is deployed separately 

to the Client LMS as a single web application, and the Client LMS uses the standard UI files 

located in <ScormEngineInterfaceDir>/defaultui. You'll essentially need to completely 

replace the SCORM Engine application while keeping your own integration DLL and 



configuration file.  Follow these steps (assuming the SCORMEngineInterface web app is 

located at <ScormEngineInterfaceDir>): 

Copy away the client integration dll: 

 <ScormEngineInterfaceDir>/bin/<ClientIntegration>.dll 

Copy away the client settings file: 

<ScormEngineInterfaceDir>/SCORMEngineSettings.config 

Delete <ScormEngineInterfaceDir>. 

Unpack the ScormEngineInterface web app to <ScormEngineInterfaceDir>. 

Copy back the client integration dll to <ScormEngineInterfaceDir>/bin/. 

Copy back the SCORMEngineSettings.config to <ScormEngineInterfaceDir>. 

Single SCORM Engine Web Application, custom user 

interface. 

In this deployment the Client LMS has its own set of SCORM Engine UI files, usually based 

on the /defaultui files, in a separate web application.  It is rare that we will have made 

changes to the UI files in a point release. If we have then we will indicate the changes so 

that the client can merge these changes into their modified ui. Additionally: 

Replace ScormEngineInterface as in the "Single SCORM Engine Web 

Application, defaultui" steps. 

Copy <ScormEngineInterface>/bin/RusticiSoftware.ScormEngine.dll to the bin 

directory of the webapp hosting the ui. 

Single Central SCORM Engine, multiple Remote SCORM 

Engines 

In this deployment there is a single SCORM Engine co-located with the database and one or 

more remote SCORM Engines co-located with the course content. 

  

Replace Central ScormEngineInterface as in the "Single SCORM Engine Web 

Application, defaultui" steps. 

Repeat this process for each Remote SCORM Engine. 

Upgrading the SCORM Engine to v2012.1 

from v2011.1 

In most cases, upgrading to v2012.1 is very straightforward two step process. 

Step 1: Update the application files 



This update can be performed using the standard upgrade process for point releases, found 

in the ​Updating your Scorm Engine for .Net​ document. 

Step 2: Update your database 

In the SCORM Engine update files that were delivered to you, open the "db" folder and then 

open the folder corresponding to the database you are using. Then open the folder "2012.1" 

and then the "upgrade" folder". In here, you will find a SQL script file that will upgrade the 

SCORM Engine database objects to be compatible with v2012.1. Simply run execute this 

script against the database containing the SCORM Engine tables to complete the upgrade. 

We  recommend backing up your existing database before attempting the upgrade to 

protect against the unlikely event of an error during script execution. 

Step 3: Configuration Additions 

There are a few new configuration settings which are applicable if you are using the 

SCORM Engine console or the new Tin Can capabilities. 

SystemHomepageUrl​ - Get the absolute URL of the cannonical, permanant, 

homepage for this system. Ideally this really is the homepage a user would 

use to access the system, but this must be cannonical and permanant, that 

is: it is a single URL the system can be identified by.  Used by Tin Can when 

creating Actors from users in the system. 

TinCanRootAccount - ​​ This is a colon-delimited name and password like 

"admin:mypass" which can be used to authenticate against the TCAPI with 

administrator rights.  This parameter is required to use the built-in console's 

Tin Can statement viewer. 

ConsolePassword​ - Password to gain access to the 

/tools/console/console.aspx page which contains some SCORM Engine 

diagnostic tools and hooks to the Tin Can Statement viewer. 

 

 

http://docs.google.com/Doc?docid=0ASokRo2m3Ow8ZGNiN3J6a2RfMTM5cnpoOWpneA&hl=en_US&authkey=CJbW8_EM

