
SCORM Engine 2008.1
Documentation
Last Modified: September 21, 2009

SCORM Engine Integration
Welcome
Working Together
The Kickoff Meeting
The Setup Phase
The Integration Phase

Import
Launch
Rollup and Reporting
Further Integration Considerations

Testing Phase
Going Forth

Material Completion
Certification
Support Process
Troubleshooting
Updates and Patches
Synchronized Code Bases

Using The Noddy LMS
History
What is the Noddy LMS?
Importing Courses

Import from an Uploaded .zip file
 Import from the Filesystem
Import Single Course from URL
Create Package from Scratch
Web Controls
Importing Multiple Courses
Parser Warnings

Main Screen
New Registration

Update Package
Properties
Delete

Working With Versions
Preview
Properties
Delete

Registrations
Registration ID Fields
Status
Launch
Report
Reset
Delete

Clearing Data
Clear All State Data
Clear All Data

Instructions for Deploying the Noddy LMS for .Net
Prerequisites
Summary
Step 1: Copy the files to the file system.
Step 2: Configure IIS
Step 3: Configure the database
Step 4: Configure the application

Database Connection String
File Paths
Applying Changes

Step 5: Permissions
Step 6: Launch
Step 7: Clean up (optional)

Instructions for Deploying the Noddy LMS for Java
Prerequisites
Summary
Step 1: Extract the files
Step 2: Configure the database
Step 3: Deploy the *.war files
Step 4: Connect the web server with the new Java applications
Step 5: Create a JNDI Data Source

Step 6: Deploy the ScormEngineSettings.properties file
Step 7: Edit the settings in the SCORMEngineSettings.properties file
Step 8: Restart and launch

SCORM Engine Settings
Working with the SCORM Engine Settings

.NET
Java

The Settings
Integration Class
Data Persistence
Advanced Data Persistence Settings
URLs
Upload Import Control
Registration Instance and Package Versioning
Optional SCORM Engine Features
Debug Settings
Central / Remote Architecture

SCORM Engine Launch Parameters
Configuration
Registration
Package
ManifestDirPath and WebPath
Tracking
ForceReview
RegForCredit
CC
StartSCO
Serializing and Encoding
Common Configurations

Launch a registration "normally"
Launch a completed registration in review mode with no changes to the tracking data
Launch an imported course in preview mode with no tracking
Launch a course that does not "count" for credit, but should still be tracked
Launch a course directly from a manifest that has not yet been imported

Mode and Credit

SCORM Engine 2008.1 Upgrade Notes
Significant Integration Changes

The "central" and "remote" web applications have been consolidated.

The SCORM Engine libraries have been consolidated into a single library.
A new default UI has been created.
A formalized public API was added.
A ScormEngineManager class has been added to formalize the public API into the
SCORM Engine that LMS integrations should be using.

Upgrading from SCORM Engine 2007.1
Step 1: Change your library references
Step 2: Utilize the new SCORM Engine web application
Step 3: Upgrade your Database
Step 4: Configuration Changes
Step 5: Integration Class Changes
Step 6: Web Controls References Change

SCORM Engine Course Properties

SCORM Engine Scalability
Introduction
Why is this such a hard question?

Deployment Variability
Integration Variability
Course Variability
Usage Variability

Empirical Evidence
Stress Testing Results
Methodology
Results
Conclusions

SCORM Engine Integration

Welcome

Thanks for purchasing the SCORM Engine. We're eager to get started and to help you use

the SCORM Engine to its full potential. This document will provide you with a road map to

the integration process. It is not intended to be a comprehensive document listing every bit

of functionality that the SCORM Engine provides, that would kill too many trees. Rather, this

document will orient you to the integration process, set expectations and provide you with

the key information needed to complete your integration.

If at any time you find yourself wishing that you had more information, or that the SCORM

Engine could do something more, or that the integration could be handled differently, please

ask. Chances are that the answer is "Yes! The SCORM Engine is built for that and here's how

to do it". You've purchased a very flexible piece of software that can handle most anything

that's thrown at it, and if it can't, we'll find a way to make it.

Working Together

So far, you've probably been working with Tim (our one-man sales department) to gain

some familiarity with the SCORM Engine and have concluded that the SCORM Engine is the

right solution for you. Together you've been through demonstrations, some technical

discussions and have executed a contract for licensing. Now it's time for the business people

to step aside and hand things over to the technical folks to work their magic.

We have a team of developers that handle SCORM Engine integrations. We will assign one

of them to this project to act as your integration consultant. The integration consultant is

there to walk you through the process step-by-step. The consultant will handle all of the

necessary SCORM Engine customizations and guide you through the changes that need to

be made in your LMS. Our integrators are quite knowledgeable and are there to answer any

questions you may have during the integration phase.

During integration, we use a tool called Basecamp for project management. Basecamp

provides a simple interface for exchanging messages, transferring files, tracking to-do lists

and setting milestones. We strongly encourage the use of Basecamp for all electronic

communication (you'll even notice our implementers logging summaries of phone calls in

there). Basecamp provides you and us with a single place to go to find the latest

deliverables, see notes from prior conversations and refresh our memories as to why things

are implemented the way they are. We have found this tool to be invaluable to both our

implementers and our clients. You will receive a welcome message via email with your log in

information to Basecamp. We can add as many users as needed to the system, so if you

have additional people who will be participating in this project or just want visibility into its

http://docs.google.com/View?docid=dd2b2ff_29fgxsdzgw&revision=_latest
https://scorm.projectpath.com/

progress, we'll be happy to give them access.

Our expectation is that the integration consultant will be working very closely and very

intensely with your developers over the next few weeks. There is a rough project schedule

listed below that represents the typical timeline for SCORM Engine integrations (this work

can go considerably faster for simple integrations). There is work to be done both on our

side and on yours. If this schedule doesn't match your expectations or if the resources on

your side aren't fully available during this time period, please let us know so we can

schedule accordingly.

SCORM Engine Integration Timeline

Week 1: Kickoff Meeting. Identify unique requirements. Generate integration layer. Initial
deploy to client sandbox.
Week 2: Importing and Launching SCORM courseware.
Week 3: Rollup results. Coding for unique requirements.

Week 4: Skinning the player. Final tweaks. Testing and cleanup. We have carefully architected the

SCORM Engine to isolate our code from your code and vice versa. We maintain this barrier

to ensure that changes to one system don't require additional integration work and don't

adversely affect the other system. Similarly we find it best to maintain a similar boundary in

the work that our integration consultants do and the work that your developers do. We are

very reluctant to make changes or affect your code in any way. Your developers are the

experts in your code and they are the ones that should be trusted to modify your system.

We will work side by side with them, guide them and advise them as much as needed, but

at the end of they day, they will be responsible for maintaining your system and they need

to fully understand everything that is in there. Likewise, we do not expect your developers

to become experts in our system overnight. We will gladly handle the the customizations

and configurations needed in the SCORM Engine. If you prefer, we can also set your

developers up with a simple development environment where they can make changes to the

integration code. We are also happy to help your developers learn the innards of the SCORM

Engine's source code should they be so motivated, but we don't want this learning curve to

stand in your way.

The Kickoff Meeting

The first step in the integration process is a kickoff meeting with all involved parties. This is

our chance to make introductions, work out some logistics and get the ball rolling. This is

very much a working meeting from which we hope to take away most, if not all, of the

information we need to generate your custom SCORM Engine integration.

The biggest part of the kickoff meeting is a tour of your LMS. We need you to show us

around and give us a feel for how your LMS works. During the tour we will be looking for

any unique requirements you have that might necessitate an advanced integration or other

tweaks to the SCORM Engine. We've seen more than a few LMS's in our days so we will

probably be very quick to understand yours.

We don't need to see everything your system has to offer, the main thing we need to figure

out is how the entities in your system map to the entities in the SCORM Engine. Specifically,

all LMS's have two entities that we will need to relate to, "packages" and "registrations".

● A "package" is often called a "course", "lesson", or "task". It is "the thing a learner
takes". A package is the unit of online instruction that is registered for, launched
and tracked. It corresponds to a single SCORM course.

● A "registration" is often called an "assignment", "instance", or "attempt". A
registration is an instance of a user taking a package with a single set of tracking
data.

If something just clicked and you see how these concepts map directly to your system,

great! If not, don't worry, our consultants excel at comprehending your system and

identifying the appropriate touch points.

During the tour, it will help to look at these areas of your LMS:

● How you import or create a new course.

● How a user is assigned to or registers for a course.

● How a user launches a course and sees his/her results.

● How administrators view reports on the results of training

The LMS tour will segue into a look at your database schema. In the database schema, we

are looking for two things, unique identifiers for a "package" and unique identifiers for a

"registration". Every LMS has these concepts, but they can be called by different names and

structured in different ways. These identifiers are the primary input our integration

consultant needs to generate the first deliverable.

Information about the platform(s) we will be working with is the final piece of information

we need from the kickoff meeting. Would you like a Java or .Net version of the Engine?

Which database platforms do you need to support, SQL Server, Oracle, MySQL, others? The

supported versions of these platforms are also helpful.

If there's time (and energy) during the kickoff meeting, we might get into topics that

answer questions for later in the integration process. Specifically, the SCORM Engine needs

to directly exchange two pieces of information with your system. First, the SCORM Engine

needs ask your LMS for some information about each user (first name, last name and

unique identifier). Second, the SCORM Engine needs to tell your LMS about the results of

training it has delivered to a learner (we call this process "rollup"). We need to figure out

the best way to perform this communication with your LMS. The SCORM Engine is quite

flexible and can use any number of communication protocols, such as:

● Direct database reads/writes

● Web service invocations

● API calls to existing system objects

● Reading/Writing information from/to a querystring parameter

Kickoff Meeting Checklist

1. Introductions made and contact information exchanged
2. LMS tour
3. Unique identifier for package established
4. Unique identifier for registration established
5. Code and database plaftform(s) established
6. Communication protocol established (Optional - often discussed later)

The Setup Phase

After the kickoff meeting, we're going to give you some homework to do while we go off and

generate the foundation of the integration.

Your homework is to get the SCORM Engine up and running in your development

environment. The SCORM Engine itself isn't very usable without an LMS, so to get you

started, we ship an application called the "Noddy LMS". The Noddy LMS is nothing more

than a simple interface to the SCORM Engine that allows you to import and launch courses.

It will allow you to get everything set up and running in your environment before the

integration with your LMS is completed. Once the integration code has been generated, the

Noddy LMS provides us a way to deploy and test the integration code before it is tied into

you system. See Instructions for Deploying the Noddy LMS for .Net and Instructions for

Deploying the Noddy LMS for Java to get started.

While you are deploying the SCORM Engine and Noddy LMS, our integration consultant will

be busy generating a customized integration for your LMS. This integration will be tailored

to the unique identifiers and supported platform(s) we identified during the kickoff meeting.

See SCORM Engine Integration Architecture for more information about the technical

aspects of this generated integration.

The Integration Phase

Now it's time to start hooking the two systems together. Our integration consultant will

deliver a generated integration to you and instructions for deploying it to the Noddy LMS.

The Noddy LMS will then be running with your specific code to let us simulate actions your

LMS will eventually initiate after integration is completed.

There are three primary touch points where we need to integrate our systems, "import",

"launch" and "rollup". This document will cover these touch points at a high level.

http://docs.google.com/a/scorm.com/View?docid=dcb7m9mj_73hp9gd3ht&revision=_latest

Key Integration Points

● Import - The act of adding a SCORM package to your LMS. This is the place in
your system where new courses are created or ingested.

● Launch - The place where delivery of an online course is initiated by the user.
● Rollup - The transfer of course progress data from the SCORM Engine into your

LMS.

Import

We typically begin the integration process with the import mechanism. The goal of this part

of the integration is to ensure that your LMS has an interface to upload and import SCORM

conformant courses. Your LMS may already have an existing interface for importing external

courses. If so, it is usually best to make slight modifications to the existing interface rather

than attempting to create an entirely new interface, but that will vary from system to

system.

There are three main outcomes that need to be met for the import integration to succeed:

1. File upload and deployment - SCORM courses are delivered as a set of files (often

in a zip package). These files need to be uploaded to your LMS server and deployed to

the appropriate locations for serving. The deployment process can be manual or

automated, but there needs to be some form of administrative interface to enable it.

2. Invoking the SCORM Engine's import routines - The SCORM Engine has some

routines that need to be invoked to discover the course and properly populate the

SCORM Engine's tables with data about the course.

3. Package entity flagging - There needs to be some mechanism for flagging the

package entity in your system as being a SCORM course that should launch with the

SCORM Engine.

The SCORM Engine comes with some reusable interfaces that will handle the first two items

above. These interfaces can be easily dropped into your existing interfaces. Alternatively, if

these interfaces aren't an ideal fit, we can show you how to create your interface to invoke

the SCORM Engine import methods through either web service calls or through direct API

calls.

When thinking about the import mechanism, you will also want to think about package

versioning. Package versioning controls how you handle updates to courses. We can help

you select from several built in schemes for dealing with versioning that the SCORM Engine

offers. These schemes should allow us to mirror the versioning functionality that your LMS

currently uses or they can be completely transparent to the LMS and only applicable inside

the SCORM Engine.

The SCORM Engine offers over 60 customized settings for controlling how each courses is

delivered to the user. We call these the "package properties". The ability to manipulate each

course's package properties is essential to ensuring broad courseware compatiblity. The

SCORM Engine offers a reusable interface for editing package properties (we recommend

using this interface instead of your own as we are constantly adding new properties). After a

course is imported, we need to make sure that your LMS provides administrators with a way

of accessing these property settings.

Launch

Launching a course in the SCORM Engine is a simple matter of redirecting the user's

browser to an appropriate URL with some querystring parameters appended. These launch

parameters tell the SCORM Engine which course to launch, which registration identifier to

associate the tracking data with and what "mode" to launch the course in. The format of

these parameters is specific to your integration, however since the Noddy LMS is configured

for your integration, it can provide examples of how to construct the launch settings.

When building the launch mechanism, we will want to consider the different modes in which

content can be launched and how they map to the functionality in your LMS. For example,

your LMS might provide a way to preview content or a way to review completed content.

The SCORM Engine can handle these and other launch modes once they have been mapped

to the functionality in your LMS.

Also during launch development, we will want to consider registration "instances". An

instance is to a registration as a version is to a package. We will need to examine your

LMS's policies around re-taking courses to see how they map to the SCORM Engine's

registration instance schemes and then select the scheme most appropriate for your

situation. Registration instances are closely related to package versions as often, new

versions of packages will trigger new instances of registrations.

Rollup and Reporting

The final major integration point is rollup and registration. This is where we take all of the

detailed data stored by the SCORM Engine for a particular registration, consolidate it down

to the data that is relevant to your LMS and push the data into your system. The first step

in the rollup integration process is determing what data you actually care about. Usually,

most LMS's will want to know high level data about the course such as its status, score and

the amount of time the learner spent in the course. The SCORM Engine can provide this and

much more. The key is to figure out what your LMS needs to operate and getting that data

in the right place. We will want to look at things such as the data that is displayed to the

student, the data that is available to administrators via reports and the data points that

trigger actions in the system (such as moving a course to the transcript or taking it off the

learner's to-do list, etc). There will also be some business rules to flesh out, such as if a

course is completed and failed, can the user retake it?

Once we have the required data identified, we then need to figure out the best way to

technically get it into your system. Every time new data is saved to the SCORM Engine (this

happens constantly while the course is being delivered), it triggers a process called "rollup".

We can configure this rollup process to take any action we need it to. For instance, we can

have it write data directly into your LMS's tables, we can have it call a web service or we

can make an API call into your system. The critical data that the learner sees and that

triggers actions in your LMS is pushed to your system via the SCORM Engine whenever

there is new data. If your system requires more detailed data for reporting, it can either be

pushed with the summary data, or pulled on demand by a later process.

Further Integration Considerations

There are a few other things that need to be considered when completing a basic

integration.

Learner information - The SCORM standards require that the SCORM Engine make some

information about the learner available to the content. Specifically, we will need to figure

out how to retrieve the learner's name and a unique identifer for the user from your system.

Database deployment - The SCORM Engine requires a database to operate. It can run on

its own database, or within the context of your existing database. How this deployment is

handled is largely a matter of style and your personal preference.

Code integration - Similar to the database, the SCORM Engine can be tightly integrated

into your code base to be compiled together, or it can be run as a stand alone compiled

application (potentially on its own server). How code is integrated and deployed is also

largely a matter of your existing setup and procedures.

Skinning - The SCORM Engine is fully skinnable and can be customized to match whatever

aesthetic scheme you desire.

Advanced Integration - There is much more that the SCORM Engine can do and many

more ways in which it can be tightly integrated into your LMS. An integration may want to

explore other areas like distributed content delivery, tight authentication, integrated error

logging, partitioned databases, advanced importing or offline deliver (using our SCORM

Untethered product which is sold separately). Your integration consultant will happily talk

you through these areas.

Testing Phase

Once the integration is completed, it is of course important that we validate and test it. The

best way to test the integration is simply to run a few sample courses through the cycle of

importing, launching, and reporting. It is generally not necessary to test every combination

and permutation of course type because the subtle errors that might be generated by

course variations happen in the SCORM Engine itself and don't vary between integrations.

To fully validate your SCORM conformance, ADL offers several Conformance Test Suites

(one for each version of SCORM) that will thoroughly test your LMS and allow you to

officially declare yourself SCORM conformant. It's not a bad idea to run these test suites,

http://adlnet.gov/downloads/DownloadsSearchResults.aspx?Category=Products

but generally not necessary to validate that your integration is functional.

Going Forth

Material Completion

Once you are able to import and deliver and rollup data from courses (even just a couple of

examples that we provide), you have achieved what we refer to as "material completion".

This a relevant milestone from both a process perspective and a contractual one. From this

point forward, we have found that your requests are often better managed via our support

portal (see below for information). Our project managers will confirm with you that you are

comfortable importing content and that you can access the support portal as needed.

It is important to understand that moving from the "implementation phase" to the "support

phase" has no impact whatsoever on the level of support or access to our people. It is
merely a change in process that helps us take better care of you.

Certification

ADL offers a certification program that formally certifies or declares products to be SCORM

conformant. The SCORM Engine has been certified for every version of SCORM, but

unfortunately this certification does not transfer to your product. To be formally certified by

ADL, you must put your LMS through the certification process. The process is not hard and

we will be happy to walk you through it. It costs about $2,000 and gives you the right to

say that your LMS is ADL SCORM Certified and to use the certification logo. We recommend

that all of our clients get certified.

Support Process

We are always here for you, even after your integration is complete and your application is

deployed. We have a dedicated support staff. If something goes awry after your integration

is completed, please email us at support@scorm.com or visit our support portal. This will

open up a support ticket and ensure you the fastest response. Our integration consultants

rotate between many projects, including development of our products, and may not always

be available to answer your questions directly once the integration is complete. Our support

staff has unfettered access to all of our consultants and developers and can quickly put you

in touch with the best person to resolve your problem.

For more details on the support process and our support portal, visit this document.

Troubleshooting

Nobody's perfect, we all make mistakes and things don't always go as expected. When

problems arise, the SCORM Engine provides a few mechanisms for getting additional

diagnostic information.

http://www.academiccolab.org/certification/scorm/index.html
mailto:support@scorm.com
http://support.scorm.com/
https://docs.google.com/document/d/19_av-lgAm24n_F7TZxKB11giE_Wa2SKU2IEOXzP2hg8/pub

The most common problem our customers face is content behaving in unexpected ways. In

almost every instance, this problem stems from a misunderstanding of the SCORM standard

on the part of the content author, but we want to hear about these problems anyway so

that we can ensure the SCORM Engine does everything it can to accommodate these

varying interpretations of the standards. To diagnose SCORM content problems, the SCORM

Engine maintains a very detailed debug log that tracks all of the SCORM calls made by the

content as well as the internal SCORM logic that the SCORM Engine executed. This debug

log can be accessed by clicking anywhere in the SCORM Engine's interface (the frames with

the black background in our default skin, or the frames that contain the table of contents or

navigational elements). Then press the question mark key five times. This should cause the

debug window to pop up. If there doesn't seem to be much information in the log, check the

package properties for the course in question. The package properties have a few settings

that control how much debug information is recorded, make sure that all of the properties

are set to record information.

For deeper problems that affect the operation of the SCORM Engine itself, we have a

detailed server-side log that can be accessed. See server-side debugging for more

information.

Rustici Software offers another tool that can be invaluable in diagnosing content problems.

The SCORM TestTrack is a freely available hosted version of the SCORM Engine that is

designed to quickly evaluate and debug courseware. The SCORM TestTrack always contains

the latest updates and patches to the SCORM Engine. If content is not behaving as expected

in your LMS, it is often useful to run the content through TestTrack as well to see if the

problem is with your LMS and integration in particular or if it is a more general problem with

the content or SCORM Engine.

Our clients will often instruct content vendors to validate content on SCORM TestTrack

before attempting to import it into their LMS. This step can save countless hours of

troubleshooting and messaging back and forth. We provide this free service for this very

reason and we encourage you to take advantage of it. Some clients have also installed

privately branded versions of TestTrack that are specific to their LMS. These licensed

TestTrack instances can be customized to integrate directly into your content acceptance

workflow to handle things like validation and approval.

Updates and Patches

We are constantly developing and improving the SCORM Engine. Our release schedule is

largely dictated by the evolution of the standards, but we typically target about one major

release per year. In the interim, we will periodically issue patches to fix significant errors or

to deal with significant standards issues. These updates are available to any customer that

is current with their licensing fees. Our support representatives will notify customers of new

releases and we will post announcements to our blog as well. Patches are typically only

applied as necessary to avoid overly burdensome update processes. Updates are generally

http://testtrack.scorm.com/

straightforward to apply, but our consultants are available to you as needed.

Synchronized Code Bases

We maintain a current copy of the integration code specific to your LMS in an internal

source control system. This system allows us instant access to your specific code base if we

need to reference it to help troubleshoot an issue or upgrade your system. If you make any

changes to your integration, please send them our way so we can keep our copy up to date.

Also, if you need to make any changes to the source code of the core SCORM Engine, please

let us know so that we can try to work your requirements into a release and keep you on

the standard maintenance path.

Using The Noddy LMS

This document provides an overview of the Noddy LMS that ships with the SCORM Engine. It

describes the functionality and purpose of the Noddy LMS and is intended to help you to

understand how to use Noddy during your integration. For instructions on installing the

Noddy LMS, please see Instructions for Deploying the Noddy LMS for .Net and Instructions

for Deploying the Noddy LMS for Java.

History

One of our top developers hails from the UK and he endures some good-natured ribbing

from the rest of us when we can't understand his slang. One day he came to us and said:

Testing the SCORM Engine during integration is a right bit dodgy. How about we knock up a

bespoke system that provides an interface for any client integration? It's easy peasy, all we

need is to examine the external identifiers using reflection, knock up a quick UI and Bob's

your uncle. No more than a fortnight for the full monty. Fancy that?What he meant is that

our old Sample LMS wasn't compatible with custom integrations of the SCORM Engine. That

incompatibility left us without a user interface for testing the SCORM Engine during most of

the integration process. He had a really innovative idea for filling that void and further

simplifying the integration process so we gave him the go ahead.

A little while later, he came back with the "Noddy LMS".

nod∙dy - adj. (British slang) - used to describe something simple, small, or childish.We

didn't quite understand what he was saying at first, but the name was kind of fun and

actually described the product quite well. So here you have it, the "Noddy LMS". Please

understand, there is nothing naughty about the Noddy LMS.

What is the Noddy LMS?

The Noddy LMS is a testing interface around the SCORM Engine. It exposes all of the basic

SCORM Engine functionality through a simple graphical user interface. The SCORM Engine is

a component that is meant to be used as part of a larger system, it can't stand alone. The

Noddy LMS provides a simple framework in which the SCORM Engine can run. It provides

http://docs.google.com/View?docid=dcb7m9mj_90gf6bq5fn&revision=_latest

the most basic LMS functionality, the ability to import, deliver and track courses.

A key feature of the Noddy LMS is that it can interface with the SCORM Engine using any

client integration layer (see SCORM Engine Integration Architecture for more information

about client integrations). This abstraction is enormously useful during the process for

integrating the SCORM Engine with an LMS. It allows us a constant interface to manipulate

the SCORM Engine before, during and after the integration. Without the Noddy LMS, there

would be a sample interface to use before the integration begins and you could use the

integrated LMS once the integration is fully complete, but in the interim, there would be no

easy and reliable way of accessing the SCORM Engine's functionality.

You can use the Noddy LMS for many things, including:

● Verifying correct installation of the SCORM Engine.

● Seeing how the SCORM Engine operates.

● Testing content in the SCORM Engine (or, use our free online SCORM Test Track tool).

● Test the integration with an LMS as it proceeds.

The Noddy LMS is particularly useful during the phase of LMS integration during which the

import mechanism is being created and to visualize the creation of new package "versions"

and new registration "instances".

Importing Courses

The first thing you will want to do in the Noddy LMS is import some content to work with.

Clicking the "Import" link from the top menu bar will bring you to the screen below.

http://docs.google.com/Doc?id=dcb7m9mj_73hp9gd3ht
http://docs.google.com/Doc?id=dcb7m9mj_65gj7c3sjg
http://docs.google.com/Doc?id=dcb7m9mj_65gj7c3sjg
http://testtrack.scorm.com/

This import page provides four options for getting content into the Noddy LMS.

Import from an Uploaded .zip file

Most often, SCORM courses are delivered in a zip file (the technical SCORM term for this is a

"PIF" or "package interchange file"). This control allows you to simply click the "Browse"

button to select a zip file to be uploaded. This is the easiest and most common method of

importing a course.

 Import from the Filesystem

There are times where it isn't practical to upload a zip file directly. For instance that zip

could be unusually large, the course could already be extracted on the web server, or there

could be an advanced content delivery scheme that requires manual deployment. For these

cases, this option allows you to simply enter a path to the course to be imported. The path

is entered as a web path that maps to a file path on this server. For instance, if your course

resides in "c:\inetpub\wwwroot\courses\my_course" and the web root maps to

"c:\inetpub\wwwroot", you would enter "/courses/my_course/" in this text box.

Import Single Course from URL

Similar to the "Import from the Filesystem" this option allows you to import a course that

has already been extracted and deployed to a web server. The difference between the two

options is that this option will retrieve the course via HTTP from any server vs the other

option which opens the course directly from the file system of the hosting server. Because

of this distinction, the full path to the course's descriptor file must be specified (for SCORM,

the "imsmanifest.xml" file, for AICC a file with the ".au" extension). For example

"http://www.mycontentserver.com/courses/my_course/imsmanifest.xml".

Create Package from Scratch

The other import mechanisms all rely on the course descriptor files to provide information

about the course that is required for import. In rare cases, courses don't have descriptor

files (especially AICC courses). This option allows you to create a new course by manually

entering the minimum information needed for a course. Simply enter a title for the course,

the URL to the launch page for a course (can be fully qualified or relative to the root of the

current server) and select the learning standard under which the course communicates to

the LMS.

Web Controls

The user interfaces for these four options are all available as reusable web controls that you

can use directly within your application.

Importing Multiple Courses

The first two options have a handy feature that allows you to import many courses at once.

If you upload a "zip of zips" to the first option, it will treat each zip file contained within the

top level zip file as a separate course and import each of them individually. Similarly, if a

directory is passed to the second option (vs specifying the full path to the descriptor file), it

will iterate through the contents of that directory (and its sub-directories) looking for

courses to import.

Parser Warnings

Not all SCORM courses are perfect. Often content developers make minor mistakes in the

structure of the content or in the details of their descriptor files. The SCORM Engine can

detect many of these common mistakes and work around them. Whenever the SCORM

Engine detects a problem that it knows how to deal with, it will issue an informative parser

warning. These warnings usually do not affect the operation of the content, but they are

worth noting should any odd behavior show up down the road. Also, it's worth trying to fix

any and all parser warnings in the content if the content is intended to run in other LMS's.

Main Screen

Once courses have been imported, they will be listed on the home page with the most

recently imported course on top. For each course, some high level information is displayed:

On the left is the external package id. The external package id is the value that the system

with which the SCORM Engine is integrated uses to identify a course in the SCORM Engine.

Integration Note: In the initial installation of the Noddy LMS, this field is labeled

"CourseId". If the SCORM Engine is integrated with another LMS, the data and labels in this

box will change to correspond with the external package id fields specific to that integration.

Next is the course title. This title was parsed from the course descriptor files during the

import process.

On the right side, there are two boxes with numbers in them. The number on the left

indicates the number of versions of this course that have been imported. This document will

discuss course versioning in a later section. The other number indicates the number of

registrations that have been made to deliver this course. A registration is an instance of a

user taking a course. Creating registrations will be discussed in the next section.

Beneath each course title are links for performing operations on that course.

New Registration

The "New Registration" link allows you to (of all things) create and launch a new

registration. Clicking on the link will bring up a dialog box prompting you to enter

information to be used to identify the new registration.

In the initial installation of the Noddy LMS, only a "UserName" is required to be entered.

This field can contain any arbitrary text, it just has to uniquely identify the registration

within this package. Simply enter a value in the "UserName" field and click "Launch".

Integration Note: The list of fields that will be displayed will vary if a

different integration is used with the Noddy LMS. This list represents all of

the components of the external registration id for the current integration

used by the SCORM Engine. Fields that are grayed out represent the

external package id (which is often part of the external registration id) and

do not need to be filled in because they are inferred from the package this

registration is associated with.Integration Note: As you enter the fields

for the external registration id, the "Launch URL" text will change. This URL

represents the URL your system would redirect to in order to launch a

course under this registration id. This feature can be handy when coding

the launch portion of your integration. Simply copy and paste the link into

your code to ensure that the formatting is correct.

Also, if your integration requires the use of external configuration information, the Noddy

LMS can be configured to append this configuration information to the launch string. Simply

add a querystring parameter "configuration=XXX" to the launch URL of the Noddy LMS.

Update Package

The "Update Package" link brings you back to the import screen. Using the standard import

controls, you can select a new course file to update the existing course. This action will

create a new version of the course. By default, existing registrations of the course will

remain on the original version of the course and new registrations will get the new version

of the course.

Integration Note: When a registration is launched and new versions of the course are

available the SCORM Engine might decide to create a fresh registration for the latest version

of the course. The circumstances under which this happens can be customized in your

integration layer.Once the new version has been created, the version count will increase and

clicking on the course title will display information about each of the versions independently.

A later section will discuss the options for working with individual package versions.

Properties

The "Properties" link takes you the the "Package Properties" page. This page allows you to

edit the properties that control how a course is delivered in the SCORM Engine. See the

SCORM Engine Package Properties document for more information on the individual

properties. Changing properties from this link will change the properties for all versions of

the course.

Delete

The "Delete" link simply deletes all versions of this package and any registrations associated

with those packages.

Working With Versions

Clicking on a course title will bring up a list of each version of the course that has been

imported. Each version has individual operations that can be performed on it.

Preview

It is often helpful to launch a course to observe it's behavior without the overhead and

tracking of a registration. The "Preview" link simply launches a course without any tracking.

Properties

The "Properties" link on a course version brings you to the "Package Properties" page just

like the "Properties" link under the course title. The difference is that this "Properties" link

edits package properties for this version only. The link under the course title edits properties

for all versions simultaneously.

Delete

The "Delete" link simply deletes this version of the package and all of the registrations

associated with this version.

Registrations

Clicking on a version name will bring up a list of the registrations associated with that

version of the package. The status boxes to the right of each package and version indicate

how many registrations are associated with the package/version. The registration box

contains information about the registration id, the registration status and links to operations

that can be performed on the registration.

Registration ID Fields

The "Registration ID Fields" at the top of the registration box list all of the external

registration id fields that identify this registration. These fields are the same fields displayed

when creating a registration except for the addition of the "InstanceId" field. An "instance"

is a version of a registration. By default in the SCORM Engine, whenever a registration is

launched, the data is always tracked under the same instance id. However, there are times

when for a given registration, multiple instances may appear (because of package

versioning or perhaps business rules governing the retaking of courses).

Status

The "Status Information" provides a high level summary of the current status data for the

course. All of these values are determined from the data the course has reported to the

SCORM Engine and the sequencing rollup rules the course author specified. (More

technically, this data is the activity state data for the root activity in the content

aggregation.)

● "Complete" indicates whether or not the learner has made it through all of the course

material.

● "Success" indicates whether or not the learner has mastered the course material.

Success status is akin to passed or failed.

● "Score" reflects the level of mastery, akin to a test score. Value is displayed on a scale

of -100 to 100 (normal results will be 0-100, but negative values are valid in SCORM,

they indicate that not only did you not master the material, but you actually did

something much worse)

● "Total Time" indicates the amount of time (in seconds) that the learner has spent in

the course.

The first three elements can all have a value of "unknown" This state indicates that the

content has not yet reported any data.

Launch

The "Launch" link will re-launch this registration. Any data from previous attempts will be

maintained on subsequent launches.

Report

Clicking on the "Report" link will bring up the "Activity Report" page. This page lists detailed

information about the current registration. All of the available SCORM data is displayed on

this page.

Reset

The "Reset" link will clear out all of the tracking data associated with this registration and

allow you to start fresh.

Delete

The "Delete" link will completely delete this registration from the database.

Clearing Data

The menu bar contains two links next to the "Import" link that are useful for clearing out

the data in the Noddy LMS. Be careful when using these and other delete functions,

especially if the Noddy LMS is running against an instance of the SCORM Engine that is

being integrated with your LMS. In that case, you are operating on real data in the SCORM

Engine.

Clear All State Data

The "Clear All State Data" link will recreate all registrations, resetting their state, while

leaving the packages and their versions intact.

Clear All Data

The "Clear All Data" link completely resets the SCORM Engine database. It deletes all

packages and registrations.

Instructions for Deploying the Noddy LMS for

.Net

This document will describe how to install the .Net version of the SCORM Engine along with

the Noddy LMS on a Windows machine running SQL Server. It will describe a basic

installation designed to get the SCORM Engine and Noddy LMS up and running quickly.

These instructions were derived from an installation on Windows XP running SQL Server

2005.

Prerequisites

This document assumes that the following are installed and properly configured on the

target computer:

7. .Net Framework 2.0+

8. Internet Information Services (IIS)

9. ASP.NET

10. SQL Server 2000+

Summary

Here's the quick version of what needs to be done to install the SCORM Engine and Noddy

LMS. These steps are outlined in detail below.

1. Extract the files in the deployable to your install location

2. Create a virtual directory in IIS that points to the location of the files (it should be

http://msdn.microsoft.com/en-us/netframework/aa731542.aspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/750d3137-462c-491d-b6c7-5f370d7f26cd.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/7ecaa5f3-5499-4887-8c9d-00aba71125df.mspx?mfr=true
http://msdn.microsoft.com/en-us/library/ms143441%28SQL.90%29.aspx

called ScormEngine and be at the root of the web server to save some configuration

effort)

3. In IIS, make the "ScormEngine", "ScormEngine/NoddyLms" and

"ScormEngine/ScormEngineInterface" directories applications. Set them to run under

ASP.Net 2.0 or higher

4. Create a new database. Run the first two scripts (in order) listed in the database

folder of the deliverable to create the SCORM Engine's database objects.

5. Open the "ScormEngineInterface/ScormEngineSettings.config" file. Change the

"DatabaseConnectionString" setting to point to the database from step 4. Change the

"FilePathToContentRoot" and "FilePathToUploadedZipppedPackage" settings to point to

the installed location of the ScormEngine files. You will then need to restart IIS.

6. Make sure that the "IUSR_ComputerName", "ASPNET" and "NETWORK SERVICE"

users have Modify permissions to the ScormEngine directory and everything

underneath it.

7. Launch the Noddy LMS at

http://SERVER_NAME/ScormEngine/NoddyLms/noddylms.aspx.

Step 1: Copy the files to the file system.

The delivery you have should be a zip file containing a single directory called "ScormEngine"

in addition to this document. Extract the zip file and then copy the "ScormEngine" directory

to wherever you would like to install the SCORM Engine. For instance, move it to the "c:"

drive to create "c:\ScormEngine" or move it to the wwwroot directory to create

"c:\inetpub\wwwroot\ScormEngine". We do not recommend putting the SCORM Engine in

any user specific directories like the desktop or My Documents as these locations can lead to

difficulties with permissions. On some versions of Windows, the Program Files directory can

also present permissions problems, but the last step of these instructions will describe the

permissions the Scorm Engine requires to operate.

Step 2: Configure IIS

The next step is to configure IIS to serve the SCORM Engine application.

Open Internet Information Services (IIS). It is under Control Panel -> Administrative Tools.

What to do next depends on where you copied the files to in Step 1.

If you put the files in the wwwroot directory, then under the Default Web Site you will

see a directory called ScormEngine.

Right click on this directory, select Properties and then press the "Create" button in the

"Application Settings" section. This will turn the directory into a web application.

Click 'OK' to close the properties window and then re-open the properties window to by right

clicking and selecting Properties (for some reason IIS requires you to close the window to

commit the change which then enables the next step).

Click on the ASP.Net tab. From the ASP.Net version drop down, select a version of .Net that

is 2.0 or greater. Then press 'OK' to exit.

Repeat these two steps for the "NoddyLms" and "ScormEngineInterface" directories

underneath the "ScormEngine" directory. When you are done, it should look like this:

If you put the files someplace other than the wwwroot directory, then you must

create a virtual directory in IIS.

Right click on the "Default Web Site", mouse over "New", then select "Virtual Directory".

When prompted for an Alias, enter "ScormEngine".

When prompted for a Directory, browse to the directory where you copied the files and

select the "ScormEngine" directory. If you copied the files to the "c:" drive, the directory

path should be "c:\ScormEngine".

When prompted for permissions the default permissions do not need to be changed. The

"Read" and "Run scripts" check boxes should be selected by default.

Now, follow the steps above (as if the files were placed in the wwwroot directory) to create

applications and select ASP.Net v2.0+ for the three required directories ("ScormEngine",

"NoddyLms" and "ScormEngineInterface"). Note, you will be able to skip the step of creating

an application for the "ScormEngine" directory since virtual directories are automatically

made into applications.

Step 3: Configure the database

The SCORM Engine can either be deployed into a new database or into an existing database.

This document will describe how to create a new dedicated database, but these steps could

just as easily be taken on an existing database.

Open SQL Server Management Studio. Right click on the Databases folder and select "New

Database".

Enter a Database name of "ScormEngine" and leave the default values for the rest of the

settings.

From the menu, select File->Open->File.

Browse to the directory where you copied the SCORM Engine files, open the "Database"

directory and then the "SqlServer" directory then select the file

"1-2008.1_SQLSERVER_SCORMENGINE.sql". When prompted, connect using your standard

login information.

Important: In the toolbar, ensure that the "ScormEngine" database is selected.

Run the script by pressing the "Execute" button in the toolbar. This will create all of the

tables and other database objects needed to run the SCORM Engine. When the script is

done, there should be a message in the Messages window stating "Command(s) completed

successfully".

Repeat the steps to run the script named

"2-2008.1_SQLSERVER_VANILLAINTEGRATION.sql". This script will create the files

necessary for running the Noddy LMS.

There is also a third script in each database directory. This script can be run to remove all of

the SCORM Engine and Noddy LMS database objects. That script can be useful for

uninstalling the SCORM Engine when the database tables were installed into an existing

database that can't simply be dropped.

Step 4: Configure the application

The SCORM Engine has a few settings that need to be configured for each installation. These

settings are located in "ScormEngine/ScormEngineInterface/SCORMEngineSettings.config"

file. Open this file in Notepad or your favorite text editor. Code editors such as Visual Studio

can provide some helpful syntax highlighting that make editing the config file easier.

Database Connection String

The first setting that needs to be changed is the DatabaseConnectionString. Find the line

called out in the image below.

The information in this string needs to be changed to match the login information for the

database hosting the SCORM Engine. There are four essential pieces of information

contained in this string:

1. The server name (defaulted to "localhost")

2. The database login user id (defaulted to "sa")

3. The database login password (defaulted to "password")

4. The database name (defaulted to "ScormEngine")

If you don't know this information, it can be derived from the connection screen that SQL

Server Management Studio displays when it launches.

If the login information is disabled, you are likely connecting to the database using Windows

Authentication instead of SQL Server Authentication. Try changing the value selected in the

Authentication drop down. If you cannot connect to the database using SQL Server

Authentication, you will need to login using Windows Authentication and create a database

login for the ScormEngine.

The database name should be "ScormEngine" unless another name or database was used in

Step 3.

Once you have determined the four values, replace the default values in the connection

string setting with the values appropriate for your installation.

For example, if your values are:

1. Server name: "lmsdev1"

2. User id: "joeuser"

3. Password: "t0psecreT"

4. Database Name: "ScormEngine"

The connection string setting would look like this:

<add key="DatabaseConnectionString"

value="server=lmsdev1;uid=joeuser;pwd=t0psecreT;database=ScormEngine"/>

File Paths

There are two settings that reference the installed location of the SCORM Engine. The

"FilePathToContentRoot" and the "FilePathToUploadedZippedPackage" settings need to be

updated to point to the place where the ScormEngine files were copied in Step 1.

http://msdn.microsoft.com/en-us/library/aa337562%28SQL.90%29.aspx
http://msdn.microsoft.com/en-us/library/aa337562%28SQL.90%29.aspx

For example, if the ScormEngine was installed directly on the "c:" drive. The settings should

look like this:

<add key="FilePathToContentRoot" value="C:\ScormEngine\NoddyLms\courses"/>

<add key="FilePathToUploadedZippedPackage"

value="C:\ScormEngine\NoddyLms\uploads"/>

Note that the "FilePathToContentRoot" setting should always point to the web directory

referenced in the "WebPathToContentRoot" setting, which, by default, should point to the

IIS directories created earlier.

Applying Changes

The SCORMEngineSettings.config file is a shared referenced configuration file that feeds the

configuration settings normally stored in ASP.Net web.config file. Unfortunately, IIS has a

bug that causes changes to the SCORMEngineSettings.config to not be recognized unless

either IIS is restarted, or the web.config file in an application changes. To commit the

changes made to the ScormEngineSettings.config file, either restart the IIS service or open

the web.config files in the NoddyLms and ScormEngineInterface directories, make a small

change and then delete the change (for instance, press space bar then backspace) then

save the files.

Step 5: Permissions

For the SCORM Engine to operate properly, some system users need to have appropriate

permissions over the ScormEngine directory.

Open My Computer and navigate to the ScormEngine directory. Right click on the

ScormEngine directory and select Properties. Select the Security tab.

We need to ensure that three system users explicitly have permissions over this directory:

1. IUSR_machinename (where "machinename" is the name of your computer, for

example "IUSR_LMSDEV1"

2. ASPNET

3. NETWORK SERVICE

If any of these users is not listed in the top text box "Group or user names:" (they probably

will not be), they need to be added.

Click on the "Add" button. Ensure that the Location is the current computer name (if it is

not, select the current computer after clicking on the "Locations" button). Click "Advanced"

to bring up a dialog that lets you search for users.

If you have only a limited number of users on the computer, just click "Find Now" to list all

of the users on the computer. Otherwise, enter some search criteria to limit the number of

results. Select the three users listed above and press "OK".

Click on each user and grant them Modify permissions by clicking on the check box in the

"Allow" column next to "Modify". Granting "Modify" permissions, should also grant "Read &

Execute", "List Folder Contents", "Read" and "Write".

Step 6: Launch

It's time to launch the Noddy LMS and make sure everything is functioning properly. Point

your browser to http://SERVER_NAME/ScormEngine/NoddyLms/noddylms.aspx. The screen

below should appear. Click on Import and try importing one of the zip files in the

SampleCourses directory. See the Using the Noddy LMS document for more information

about what else you can do in the Noddy LMS.

Step 7: Clean up (optional)

In the SCORM Engine directory, the "Database" and "SampleContent" directories can be

deleted once setup is complete. They are not necessary for running the SCORM Engine, but

nor does it hurt to leave them there.

Instructions for Deploying the Noddy LMS for

Java

This document will describe how to install the Java version of the SCORM Engine along with

the Noddy LMS. It will describe a basic installation designed to get the SCORM Engine and

Noddy LMS up and running quickly. These instructions were derived from an installation on

Windows XP running the Apache HTTP Server connected to Apache Tomcat with mod_jk and

using a MySQL database (with MySQL GUI tools installed). There are many permutations of

platforms and application servers that can run the SCORM Engine and Noddy LMS. This

document will take you through the basic steps that need to be performed on any platform,

giving specifics for how to perform the installation on this particular platform

Prerequisites

This document assumes that the following are installed and properly configured on the

target computer:

1. Java Runtime Environment (J2SE 5.0 or higher) - JRE 1.6 used in this example

2. Java Application Server supporting J2EE 1.4 or higher (like Apache Tomcat,

WebSphere®, JBoss® or WebLogic®) - Apache Tomcat 6.0 using in this example.

3. Web server (like Apache HTTP Server or Microsoft IIS). Optional, if the application

server is capable of serving HTTP - Apache HTTP Server 2.2 used in this example.

4. Database (like MySQL, SQL Server or Oracle) - MySQL 5.0 used in this example.

5. Database JDBC Driver (appropriate driver based upon Database selection) -

mysql-connector-java-5.1.6-bin.jar used in this example.

http://java.sun.com/javase/downloads/index.jsp
http://tomcat.apache.org/
http://httpd.apache.org/
http://dev.mysql.com/downloads/
http://www.mysql.com/products/connector/j/

Summary

Here's the quick version of what needs to be done to install the SCORM Engine and Noddy

LMS in our example configuration. {catalina.home} is the installation directory of Tomcat.

(In a default installation on Windows, {catalina.home} is "C:\Program Files\Apache

Software Foundation\Tomcat 6.0"). These steps are outlined in detail below.

1. Extract the files in your deployable to a temporary location.

2. Create a new database. Run the first two scripts (in order) listed in the Database

folder of the deliverable to create the SCORM Engine's database objects.

3. Deploy the two *.war files from the root of the deployable to the Java Application

Server. (By copying them to the "{catalina.home}/webapps/" directory in Tomcat).

4. If using a separate HTTP Server and Java Application Server, add entries to the

application service connector for the two newly deployed *.war files. (By adding

entries to the mod_jk file in the example configuration).

5. Create a JNDI Data Source to connect to the database created in Step #2. (By adding

a resource entry to the context.xml file in the example configuration). Make sure your

application server has a jdbc driver for your database. (By putting

mysql-connector-java-5.1.6-bin.jar in "{catalina.home}/lib/" in the example

configuration).

6. Copy the ScormEngineSettings.properties file to the web applications' class path. (The

"{catalina.home}/lib/" is the simplest place to put it in the example configuration).

7. Modify the URL and file path settings in the ScormEngineSettings.properties file to

point to your particular installation location. If the *.war files were deployed to the

root of your application server, the only settings that should need to change are

WebPathToContentRoot, FilePathToContentRoot and

FilePathToUploadedZippedPackage. These should point to the "courses" and "uploads"

directories within the NoddyLms application.

8. Restart the servers if needed to pick up the configuration changes and launch the

application from http://SERVER_NAME/NoddyLms/NoddyLms.jsp.

Step 1: Extract the files

This should be a nice easy warm up step to get us started. Simply use your favorite

compression utility to extract the zip file deployable to a temporary location. The resulting

directory structure should look something like this:

Step 2: Configure the database

The SCORM Engine can either be deployed into a new database or into an existing database.

This document will describe how to create a new dedicated database, but these steps could

just as easily be taken on an existing database.

The key aspect of this step is running the provided DDL scripts to create the tables, indices

and other database objects required by the SCORM Engine. The DDL scripts are found in the

"Database" folder within the deployable. Within that folder are subdirectories representing

the scripts for the most commonly used database platforms (if your platform is not included

in here, please let us know). The first two scripts should be run in order (they begin with "1"

and "2" respectively). The third script will clean out the objects created by the first two

scripts and should only be run if you wish to back out the changes made by the other

scripts.

In MySQL, open up MySQL Administrator and select "Catalogs" from the list at the left. Right

click in the list of databases at the bottom left and select "Create New Schema". We

typically name the new schema "ScormEngine".

Now launch the MySQL Query Browser, either from the Start menu or from MySQL

Administrator's Tools menu.

Select "File->Open Script..." and select the

"{deployment_files_dir}/Database/MYSQL/1-2008.1_MYSQL_SCORMENGINE.sql" file. In the

Schemata list on the right, double click on the ScormEngine database to select it and then

press the Execute button to run the first script.

Repeat this step for the file

"{deployment_files_dir}/Database/MYSQL/2-2008.1_MYSQL_VANILLAINTEGRATION.sql".

Step 3: Deploy the *.war files

This step will vary considerably based on the Java Application Server being used. You will

need to use the two provided *.war files to create new applications on your application

server. You may name them whatever you wish, but for simplicity it is best to deploy them

to the root of the server and leave their names as "NoddyLms" and "ScormEngineInterface".

If alternate locations are chosen, there will be additional configuration required in Step #7.

In Apache Tomcat, creating a new application from *.war files is easy. By default, all you

have to do is copy the *.war files into the "{catalina.home}/webapps" directory. If the

Tomcat server is running, it will automatically detect the new *.war files and create the

applications. Simply copy "NoddyLms.war" and "ScormEngineInterface.war" from the root of

the deployment files directory to the "{catalina.home}/webapps directory".

After a moment, Tomcat will create two new application directories in the webapps folder.

This will indicate that Tomcat has successfully installed the new web applications.

Step 4: Connect the web server with the new Java

applications

If using a web server that is separate from the Java Application Server you will need to

inform the web server of the newly created Java applications. The web server needs to

know where on the application server to redirect requests for URLs in the NoddyLms and

ScormEngineInterface applications.

In the example configuration, this link is established by adding "JkMount" entries to the

Apache configuration. These entries are often included in a mod_jk.conf file (that is

referenced from the httpd.conf file) or they are included directly in the httpd.conf file. This

example has a mod_jk.conf file that is referenced from the httpd.conf file, both of which are

located in the "conf" dir within the Apache home directory.

The entries that should be added to the configuration are:

 JkMount /ScormEngineInterface/* worker1

 JkMount /NoddyLms/* worker1"worker1" might be replaced with the name of worker in your

instance of Tomcat. Workers are defined in the file specified by the "JkWorkersFile" entry in

the mod_jk config (likely right above the entries for "JkMount").

Step 5: Create a JNDI Data Source

The Java Application Server needs a JNDI Data Source to connect to the database created in

Step #2. The data source should be named "jdbc/ScormEngineDB".

In Apache Tomcat, a JNDI Data Source is created by creating a new "Resource" entry in the

context.xml file located in the "{catalina.home}/conf" directory. Example resource entries

are located in the "Config/datasource" folder within the deployable. Find the apporpriate

example for your database, open the XML file in a text editor and copy the entire "Resource"

tag to the clipboard (don't forget to include the "/>" characters at the end). Now, open the

context.xml file in the "{catalina.home}/conf" directory in a text editor and paste the

example "Resource" tag anywhere within the "Context" tag. Update the values in the

username, password and url attributes to point to the database created in Step #2 with the

appropriate login credentials.

Make sure your application server has a jdbc driver for your database. (By putting

mysql-connector-java-5.1.6-bin.jar in "{catalina.home}/lib/" in the example configuration).

Step 6: Deploy the ScormEngineSettings.properties file

The SCORMEngineSettings.properties file contains a number of configuration and

deployment settings that the SCORM Engine relies on. The SCORMEngineSettings.properties

file is located in the "Config" directory of the deployable. This file needs to be copied to

somewhere in the web applications' class path.

In the example configuration, the "{catalina.home}/lib/" directory is the simplest place to

put this properties file.

Step 7: Edit the settings in the

SCORMEngineSettings.properties file

Open the newly deployed SCORMEngineSettings.properties file in a text editor. Some of the

settings in this file will need to change to be consistent with your deployment.

In the "URLS" section of the configuration, nothing will need to change IF you deployed the

*.war files to the root of your application server in Step #3. If you deployed the files to an

alternate location, all of the URLs in this section will need to be updated to refer to the

location of your deployment.

The settings in the section titled "Upload Import Control Default Integration Parameters",

control where course files are placed when they are uploaded during the import process.

There are two locations that need to be recorded, "FilePathToUploadedZippedPackage" is a

path on the file system where zip files containing courses are uploaded temporarily before

they are extracted. Once courses are extracted, they are placed in "FilePathToContentRoot".

This directory is where courses are ultimately server from by the web server.

"WebPathToContentRoot" specifies the URL that the web server maps to the

"FilePathToContentRoot" directory. In a production system, you will likely want to customize

these settings to properly integrate with your existing content deployment scheme (your

integration consultant can help you with this process). To simply deploy the Noddy LMS and

get things up and running, you can set these values to point to the "courses" and "uploads"

directories included in the NoddyLms.

WebPathToContentRoot: "/NoddyLms/courses"
FilePathToContentRoot: "{catalina.home}/webapps/NoddyLms/courses"

FilePathToUploadedZippedPackage: "{catalina.home}/webapps/NoddyLms/uploads"

Step 8: Restart and launch

Restart the web server and Java Appliation Servers if needed to pick up the cofiguration

changes and launch the application from http://SERVER_NAME/NoddyLms/NoddyLms.jsp.

The screen below should appear. Click on Import and try importing one of the zip files in the

SampleCourses directory. See the Using the Noddy LMS document for more information

about what else you can do in the Noddy LMS.

SCORM Engine Settings

The SCORM Engine contains a number of configuration settings. These settings contain

logistical information about how the SCORM Engine is deployed and they control how the

SCORM Engine behaves. The SCORM Engine settings do not need to be changed frequently.

They are typically only accessed during integration with another system and during

deployment to new servers. If non-static values for any of these settings are needed, their

values can be altered through the integration layer instead of being statically stored in the

configuration file. The settings control the operation of both the SCORM Engine and of the

Noddy LMS.

Working with the SCORM Engine Settings

The method for accessing and changing the SCORM Engine settings varies depending on the

platform you are running (.NET or Java).

.NET

In a .NET installation of the SCORM Engine, the settings are contained in a file called

"ScormEngineSettings.config". This file is located at the root of the SCORM Engine

installation, in the directory above the "ScormEngineInterface" and the "NoddyLms"

directories.

The "ScormEngineSettings.config" file is a standard ASP.Net Configuration file. It is included

by reference in the "web.config" files in the ScormEngineInterface and NoddyLms

directories. The settings for the SCORM Engine can be stored in any valid and accessible

ASP.Net configuration location.

The "ScormEngineSettings.config" file is a standard XML file that can be edited in any text

editor or XML editor.

http://msdn.microsoft.com/en-us/library/aa719558.aspx
http://en.wikipedia.org/wiki/Web.config

Alternatively, recent version of IIS include an "Edit Cofiguration" button on the ASP.NET tab

of the applications properties. This button brings up a GUI for editing application settings

individually.

IIS doesn't automatically detect changes made to the "ScormEngineSettings.config" file. In

order to get the changes you make to be detected by IIS, you need to either: restart IIS or

make a small change to both "web.config" files (one in the ScormEngineInterface directory

and one in the NoddyLms directory) and resave them. IIS will pick up a change to the

web.config files automatically. An easy way to get the changes picked up is to open the

"web.config" files, type a character, delete the character and then re-save.

Java

In a Java installation of the SCORM Engine, the settings are contained in a file called

"SCORMEngineSettings.properties". This file should be deployed to a location in the web

applications' class path.

The "SCORMEngineSettings.properties" file is a standard Java configuration file. This file is a

standard XML file that can be edited in any text editor or XML editor.

Depending on your Java Application Server, you may need to cycle the application in order

for configuration changes to be picked up.

The Settings

The SCORM Engine settings can be broken up into eight groups:

1. Integration class

2. Data persistence

3. URLs

4. Upload import control

5. Registration instance and package versioning

6. Optional SCORM Engine features

7. Debug settings

8. Central / remote architecture

Integration Class

These two settings determine which class the integration factory will load. This class should

be the concrete implementation of the integration interface that is designed to work with

the current LMS (the integration layer).

LogicIntegrationAssemblyName - The .NET assembly in which the integration class

resides. The assembly name is the name of the DLL containing the code and often

corresponds to the namespace of the class in which the integration class resides. This

setting is not required for Java.

Example: "RusticiSoftware.ScormEngine.VanillaIntegration"

LogicIntegrationClassName - The fully qualified name of the actual integration class to

load. Usually, this is the assembly name concatenated with with the class name.

Example: "RusticiSoftware.ScormEngine.VanillaIntegration.VanillaIntegration"

Data Persistence

The data persistence settings control how the SCORM Engine accesses the database.

DataPersistenceEngine - The SCORM Engine supports many different data persistence

options. This setting controls which of the supported options the SCORM Engine will use.

The options are listed in the table below.

Value Description

"compactsqlserver" Connect to a Microsoft SQL Server CE database. (.NET Only)

"db2" Connect to a IBM DB2 database. (.NET Only)

"db2_zos" Connect to a IBM DB2 for z/OS (Mainframe). (.NET Only)

"mysql" Connect to a MySQL database.

"odbc" Connect to any database that supports an ODBC interface. (.NET

Only)

"oracle" Connect to an Oracle database

"oracle-not_optimized" Connect to an Oracle database without using the bulk persistence

stored procedure.

"ole" Connect to any database that supports an OLE interface. (.NET

Only)

"plugin" Use a custom devloped data persistence mechanism.

"sqlite" Connect to a SQLite database. (.NET Only)

"sqlserver" Connect to a Microsoft SQL Server database.

"sqlserver-not_optimized

"

Connect to a Microsoft SQL Server database without using the

bulk persistence stored procedure.

Note: The "not _optimized" versions of the Oracle and SQL Server persistence engines are

recommended for high volume installations. The standard versions are more efficient for

lower volume installations.

DatabaseConnectionString - The connection string that the SCORM Engine will use to

connect to the database. The value for this setting varied based on the platform you are

running.

http://msdn.microsoft.com/en-us/library/ms973231.aspx
http://www.microsoft.com/Sqlserver/2005/en/us/compact.aspx
http://www-01.ibm.com/software/data/db2/
http://www.mysql.com/
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://www.oracle.com/technology/products/database/oracle11g/index.html
http://www.oracle.com/technology/products/database/oracle11g/index.html
http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://www.sqlite.org/
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

In .NET, the value is an actual connection string. The format of the connection string will

vary depending on the data persistence engine selected. Some examples of connection

strings on various platforms are included in the table below.

Data Persistence Engine Example .NET Connection String

SQL Server "server=localhost;uid=sa;pwd=password;dat

abase=ScormEngine"

MySQL "Host=localhost:3006;UserName=root;Pass

word=password;Database=ScormEngine;"

Oracle "Data Source=oracledb.local;User

Id=ScormEngine;Password=password;Integr

ated Security=no"

IBM DB2 "Provider=IBMDADB2;Data

Source=ScormEngine;UID=ScormEngineUse

r;PWD=password"

In Java installations, this parameter is optional. If not value is provided, the SCORM Engine

will use a pre-defined data source named "jdbc/ScormEngine". If you would like the SCORM

Engine to use another named data source, simply include it's name as the value of this

setting.

Advanced Data Persistence Settings

These settings are all optional and are only used used in advanced scenarios to accomodate

varied data persistence options. The data persistence engine setting is essentially a shortcut

to specify various combinations of pre-define data peristence classes and should be used

instead of these settings unless an uncommon scenario is encountered.

DataPersistanceAssemblyName (optional) - When using the "plugin" data persistence

engine, this settings specifies the name of the assembly from which to load the data

persistence plug-in class. This setting is not required for Java.

Example: "RusticiSoftware.ScormContentPlayer.Logic"

DataPersistancePersistClassName (optional) - When using the "plugin" data persistence

engine, this setting specifies the name of the class within the DataPersistenceAssembly that

handles persisting data to the database. This class contains the actual SQL (or other

commands) for manipluating SCORM Engine data within the database.

Example: "RusticiSoftware.ScormContentPlayer.Logic.SqlPersistImplementation"

DataPersistanceRetrieveClassName (optional)- When using the "plugin" data

persistence engine, this setting specifies the name of the class within the

DataPersistenceAssembly that handles retrieving data from the database. This class

contains the actual SQL (or other commands) for manipluating SCORM Engine data within

the database.

Example: "RusticiSoftware.ScormContentPlayer.Logic.SqlRetrieveImplementation"

http://www.connectionstrings.com/

DataHelperAssemblyName (optional)- When using the "plugin" data persistence engine,

this settings specifies the name of the assembly from which to load the data helper plug-in

class. This setting is not required for Java.

Example: "RusticiSoftware.ScormContentPlayer.DataHelp"

DataHelperClassName (optional) - When using the "plugin" data persistence engine, this

setting specifies the name of the class within the DataHelperAssembly that handles

connecting to and interacting with the database. This class contains generic helper functions

that abstract the process of connecting to an querying a specific database.

Example: "RusticiSoftware.ScormContentPlayer.DataHelp.JdbcDataHelper"

DataPersistanceUseStoredProcsIfAvailable (optional, default="true") - This setting

modifies the behavior of the SQL Server and Oracle data persistence engines to use stored

procedures or regular SQL when performing some functions. In general, this setting should

not be modified. Possible values: "true" or "false".

URLs

The URLs specified in the SCORM Engine settings contain information about where the

SCORM Engine was deployed and where it should make requests to. These settings allow for

a lot of flexiblity in how the SCORM Engine is deployed, in most situations however, they

will all point to the single directory in which the SCORM Engine is deployed. Unless

otherwise specified, the URLs can either be fully qualified (ex:

"http://www.mylmsserver.com/ScormEngine/pagename.aspx") or, relative to the root of

the web server on which the SCORM Engine is deployed (ex:

"/ScormEngine/pagename.aspx").

Note: For simplicity, the file extension has been omitted from the page names included

below. The file extension will either be ".aspx" for .NET deployments or ".jsp" for Java

deployments.

RemoteAiccRequestProcessorUrl - URL to the "ProcessAiccRequest" file. This URL should

be in the same domain that content is launched in. In a standard deployment, this setting

should contain the same value as the "CentralAiccRequestProcesorUrl" setting, or it can be

omitted. In a cross domain, central/remote deployment, this setting should point to the

"ProcessAiccRequest" page in the SCORM Engine instance deployed to the content server.

The URL should either be fully qualified, or relative to the location from which the content is

lanched.

Example: "/ScormEngine/ScormEngineInterface/ProcessAiccRequest.aspx"

CentralAiccRequestProcessorUrl - URL to the "ProcessAiccRequest" file. This URL should

be in the same domain that LMS resides in. In a standard deployment, this setting should

contain the same value as the "RemoteAiccRequestProcesorUrl" setting. In a cross domain,

central/remote deployment, this setting should point to the "ProcessAiccRequest" page in

the SCORM Engine instance deployed to the LMS server and the URL should be fully

qualified.

Example: "/ScormEngine/ScormEngineInterface/ProcessAiccRequest.aspx"

ScormResultProcessorUrl - URL to the "RecordResults" file. This URL should be in the

same domain that the content resides in.

Example: "/ScormEngine/ScormEngineInterface/RecordResults.aspx"

CentralWebServiceUrl - URL to the "RuntimeDataExchange.asmx" file. This setting is only

needed for cross domain, central/remote deployments. This URL should be an fully qualified

URL to the "RuntimeDataExchange.asmx" file on LMS server. Currently this functionality is

only available in the .NET implementation of the SCORM Engine.

Example:
"http://www.lmsserver.com/ScormEngine/ScormEngineInterface/RuntimeDataExchan

ge.asmx"

ImportWebServiceUrl - URL to the "ImportService.asmx" file. This setting only applies to

deployments using the SCORM Engine's import controls on a server other than the LMS

server. This URL should be an fully qualified URL to the "RuntimeDataExchange.asmx" file

on LMS server. Currently this functionality is only available in the .NET implementation of

the SCORM Engine.

Example:
"http://www.lmsserver.com/ScormEngine/ScormEngineInterface/ImportService.asmx

"

UrlToCentralLaunchPage - URL to the "defaultui/launch" page. This setting is only used

by the Noddy LMS to determine how to redirect to the SCORM Engine when launching

content. In a production deployment where the Noddy LMS is not deployed, this setting is

not required. When creating a custom skin of the SCORM Engine during integration with an

LMS, it may be helpful to change this setting to point to the launch page in the directory

containing your skin (vs the "defaultui" directory) in order to test the functionality of your

skin.

Example: "/ScormEngine/ScormEngineInterface/defaultui/launch.aspx"

RemoteLaunchPageUrl - URL to the directory containing the "deliver" page. This directory

can vary when using custom skins of the SCORM Engine. When using a cross domain,

central/remote deployment, this setting should be a fully qualified URL pointing to the

server from which the content will be served. Note: This URL should include a slash at the

end.

Example: "/ScormEngine/ScormEngineInterface/defaultui/"

ScormEngineScriptsUrl - URL to the directory containing the "launch" page. This directory

can vary when using custom skins of the SCORM Engine. When using a cross domain,

central/remote deployment, this setting should be a fully qualified URL pointing to the

server from which the content will be served. Note: This URL should not include a slash at

the end.

Example: "/ScormEngine/ScormEngineInterface/scripts"

RedirectOnExitUrl - URL to which the SCORM Engine should redirect the user after the

user exits the SCORM Engine. This URL should point to a location in the host LMS.

Example: "/ScormEngine/NoddyLms/NoddyLms.aspx"

StylesheetUrl - URL to the stylesheet used by the current SCORM Engine skin.

Example: "/ScormEngine/ScormEngineInterface/defaultui/defaultstyles.css"

Upload Import Control

These settings are used by the web control that provides an interface for uploading content

and importing it into the SCORM Engine. If this web control is not used by the LMS

integrated with the SCORM Engine, then these settings are not required.

WebPathToContentroot - HTTP path to the directory in which uploaded courses should be

stored. This directory should map to the directory specified in "FilePathToContentRoot".

Note: This setting should include a slash at the end.

Example: "/courses/"

FilePathToContentRoot - File path to the directory in which uploaded courses should be

stored. This directory should contain the files served by the path specified in

"WebPathToContentroot". Individual courses will be placed in subdirectories within this

directory. Note: This setting should not include a slash at the end.

Example: "C:\inetpub\wwwroot\courses"

FilePathToUploadedZippedPackage - Courses are uploaded as zip files. This setting

specifies a temporary directory that zipped courses are uploaded to prior to their extraction

into the directory specified in "FilePathToContentRoot". After extraction, zip files are deleted

from this directory. Note: This setting should not include a slash at the end.

Example: "C:\inetpub\wwwroot\courses\uploads"

UrlToUploadResources - URL to the "UploadImportControl" directory that must be

deployed with the upload import web control. This directory contains resources the user

interface of the upload control needs to function properly. Note: This setting should include

a slash at the end.

Example: "/ScormEngine/NoddyLms/UploadImportControl/"

Registration Instance and Package Versioning

These settings control how and when a new versions of packages and registrations are

created. A version of a registration is called an "instance".

CreateRegistrationIfNeeded - When the SCORM Engine is launched with an external

registration id that does not already exist, this setting controls whether a new registration is

created for that id (setting="true") or if an error is thrown (setting="false"). This setting

should be set to "false" only when SCORM Engine registrations are pre-created by the LMS

via SCORM Engine API calls. Possible values: "true" or "false".

WhenToRestartRegistration - Controls the logic that is used to determine if a new

instance of a registration should be created on launch.

Setting Value Behavior

"1" Never create new registration instances.

Always relaunch the registration using the

existing set of tracking data.

"2" Create a new registration instance if there is

a newer version of the package being

delivered and the current registration

instance is completed.

"3" Create a new registration instance whenever

there is a newer version of the package

being delivered.

"4" Create a new registration instance whenever

the user launches a registration that has

previously been completed.

"5" Create a new registration instance whenever

the user launches a registration that has

previously been satisfied.

"6" Create a new registration instance if there is

a newer version of the package being

delivered and the current registration

instance is satisfied.

IsPackageVersioningEnabled -When the SCORM Engine's import routines are called with

an external package id that already exists, this setting controls whether a new package

version is created or whether an error is thrown. Possible values: "true" (create new

package versions) or "false" (throw an error).

Optional SCORM Engine Features

These settings control the behavior of some optional SCORM Engine features that might not

apply to all installations.

2004Enabled - Tells the SCORM Engine whether this installation has the capability to

deliver SCORM 2004 content. This setting does not actually affect the SCORM Engine's

ability to deliver SCORM 2004 content, instead it just tells the SCORM Engine whether or

not to issue a warning message when the user attempts to import SCORM 2004 content.

Possible values: "true" (SCORM 2004 support is enabled) or "false" (SCORM 2004 support is

not enabled).

SSPEnabled- Tells the SCORM Engine whether this installation has the capability to deliver

SSP content. This setting does not actually affect the SCORM Engine's ability to deliver SSP

content, instead it just tells the SCORM Engine whether or not to issue a warning message

when the user attempts to import SSP content. Possible values: "true" (SSP support is

enabled) or "false" (SSP support is not enabled).

SSPSizeAllocation - When using SSP, this setting determines the maximum amount of

storage that a given course can request for a given registration. This setting is an integer

that specifies a number of bytes.

Example: "1048576" (corresponds to 1 MB of storage)

UseCompressedJavascript - The SCORM Engine sends a lot of JavaScript code to the

user's browser to implement all of the required SCORM functionality. To speed up the

loading process, by default, this code is compressed and consolidated. This setting controls

whether the compressed version of the code is delivered to the browser (the best setting for

production environments) or whether the raw, uncompressed code is delivered to the

browser (useful for development and debugging). Possible values: "true" (deliver

compressed code) or "false" (deliver raw code)

Debug Settings

These settings control the amount of debugging information that is recorded by the SCORM

Engine. There isn't much of a performance penalty for recording this information, so we

recommend that these settings typically be left at their default values to assist with

troubleshooting. In this context, "audit" means recording basic debug information about

what happend and when. "Detailed" means recording the precise details of how each action

was executed. In order for the "detailed" information to be properly recorded, the "audit"

level information must also be captured.

KeepAuditLog - Determines whether server-side debug information is captured at the

audit level. This log tracks which server-side pages where requested and when. Possible

values: "true" (record information) or "false" (don't record information).

KeepDetailLog - Determines whether server-side debug information is captured at the

detailed level. This log tracks the execution of server-side pages. Possible values: "true"

(record information) or "false" (don't record information).

KeepSoapLog - When used a cross domain, central/remote architecture, this setting

determines if the exact contents of SOAP web services calls between the central and remote

instances are logged. Possible values: "true" (record information") or "false" (don't record

information).

DebugControlAudit - Determines whether client-side information about the overall

execution of the SCORM Engine is recorded at the audit level. "Control" information tracks

what was launched when as well as the communication with the server. Possible values:

"true" (record information) or "false" (don't record information).

DebugControlDetailed - Determines whether client-side information about the overall

execution of the SCORM Engine is recorded at the detailed level. Possible values: "true"

(record information) or "false" (don't record information).

DebugRteAudit - Determines whether SCORM runtime calls from SCOs are logged are

recorded to the client-side debug log at the audit level. Possible values: "true" (record

information) or "false" (don't record information).

DebugRteDetailed- Determines whether SCORM runtime calls from SCOs are logged are

recorded to the client-side debug log at the detailed level. Possible values: "true" (record

information) or "false" (don't record information).

DebugSequencingAudit - Determines whether the execution of the SCORM sequencing

logic is recorded to the client-side debug log as the audit level. Possible values: "true"

(record information) or "false" (don't record information).

DebugSequencingDetailed - Determines whether the execution of the SCORM sequencing

logic is recorded to the client-side debug log as the detailed level. Possible values: "true"

(record information) or "false" (don't record information).

DebugLookAheadAudit - The SCORM Engine executes "look ahead" runs of the SCORM

sequencer whenever pertinent data is changed in order to determine whether or not to

enable/disable/show/hide the various navigational controls available to the user. This

setting determines if these executions are recorded to the client-side debug log at the audit

level. Possible values: "true" (record information) or "false" (don't record information).

DebugLookAheadDetailed - Determines whether the execution of the look ahead SCORM

sequencing is recorded to the client-side debug log as the detailed level. Possible values:

"true" (record information) or "false" (don't record information).

DebugIncludeTimestamps -Determines whether or not the client-side debug logs should

include time stamps indicating when audit-level events occur. Possible values: "true"

(record time stamps) or "false" (don't record time stamps).

Central / Remote Architecture

These settings apply to the use of the cross domain, central/remote architecture.

UseWebServices - Determines whether or not he cross domain, central/remote

architecture is in use. If this setting is set to "true", requests to persist data will be

forwarded to the location specified in the URLs specified in the

CentralAiccRequestProcessorUrl and CentralWebServiceUrl settings. If this setting is set to

"false", requests will be directly processed. Possible values: "true" or "false".

WebServiceRetries - If using web services, this setting determines the maximum number

of times the remote instance will attempt to contact the central instance in the event of an

error. Once the maximum number of retries has been reached, the remote instance will

assume that communiation with the central instance has been lost and notify the user that

an error has occured. This value is specified as an integer.

Example: "3"

WebServiceRetryInterval - If the remote instance needs to retry its communication with

the central instance, this setting determines how long the remote instance will wait before

resending the request. This value is specified in milliseconds. When using a central/remote

architecture, the maximum time that could be spent retrying requests (calculated as

WebServicesRetries * WebServiceRetryInterval) should be significnatly less than the default

CommCommitFrequecy package property to prevent the remote server from being

overloaded in the event of a failure of the central server. This maximum time value also

needs to be less than the ASP.NET / JSP page timeout value.

Example: "5000" (corresponds to 5 seconds)

SCORM Engine Launch Parameters

When launching the SCORM Engine, there a several parameters that can be passed to it via

the querystring. These parameters tell the SCORM Engine which course to load, how to

track the learner's progress and how the course should behave.

Paramet

er Name

Possible Values (should be URL

encoded)

"configura

tion"

A serialized external configuration object

"registrati

on"

A serialized external registration id

"package" A serialized external package id

"manifest

DirPath"

A valid file path or HTTP path

"webPath

"

A value HTTP path to a directory

"tracking" "true" or "false"

"forceRevi

ew"

"true" or "false"

"regForCr

edit"

"true" or "false"

"cc"

CultureCode to choose a delivery language.

(e.g., 'en', 'fr'. Note, this functionality is not

turned on by default.)

"startSco" An Item Identifier that identifies a SCO in

the manifest.

Configuration

The "configuration" parameter contains a serialized version of the specific integration's

external configuration object. This parameter is always required to be present, but usually

does not have to contain a value. The external configuration object is used to vary the

behavior of the SCORM Engine in the integration layer. Passing in a string representation of

this object at launch, will cause an instance of the specific integration's external

configuration object to be instantiated and passed into the integration layer whenever an

integration function is called.

Registration

The "registration" parameter contains a identifier that should be associated with the SCORM

tracking information for this course launch. This is the "external registration id". The format

of the registration parameter should be a serialized version of the specific integration's

external registration id object. If the external registration id specified in this parameter does

not already exist in the SCORM Engine, then by default a new registration will be created

(although this behavior can vary based on the integration layer and the

"CreateRegistrationIfNeeded" SCORM Engine setting). If the specified external registration

id does exist, then that registration will be resumed and the tracking data from any previous

attempts will be restored.

Package

The "package" parameter contains an external package id identifying a package that has

already been imported into the SCORM Engine. If no "registration" parameter is passed in,

then the package identified in this parameter will be launched in a preview mode with no

tracking. If a "registration" parameter is passed in and a new registration needs to be

created because the external registration id does not exist, then the package identified by

this parameter will be associated with the newly created registration. If the "registration"

parameter is passed in and there is an existing registration, then the "package" parameter

is ignored.

Registration Parameter Package Parameter Action

Not Included Included Package is launched in

preview mode

Included, no matching

registration exists

Included New registration is created

with specified package

Included, matching

registration does exist

Included Existing registation is

launched, package parameter

is ignored. If the registration

id does exist, the package

parameter is not required.

ManifestDirPath and WebPath

The "manifestDirpath" and "webPath" parameters are used in conjunction with one another.

They enable the SCORM Engine to launch a course that has not yet been imported. The

course's manifest is parsed on the fly and the course is launched in a preview mode with no

tracking. The "manifestDirPath" parameter should contain either a file path (accessible to

the server on which SCORM Engine is deployed) or an HTTP location of the course's

descriptor file (usually the imsmanifest.xml file). When launching a course that has not yet

been imported, you also need to pass in the "webPath" parameter to tell the SCORM Engine

where the course resides. The "webPath" parameter is an HTTP path to the root of the

course (usually the directory where the manifest resides).

Tracking

The "tracking" parameter provides a way to launch a registration without saving any of the

tracking data associated with the course. When the "tracking" parameter is provided set to

"false", the SCORM Engine will still accept all of the SCORM data sent to it by the content,

but it will only persist it for the duration of the session. When the learner exits the course,

all of the new data is discarded and the original state is preserved. This mode is useful for

allowing learner's to review content that has already been completed to ensure that the

record of their completion is not overwritten. If not included, the default value for this

paramter is "true".

ForceReview

When set to "true", the "forceReview" parameter ensures that the data model element for

mode ("cmi.mode" or "cmi.core.lesson_mode") is always set to "review". This setting is

often used in conjunction with the "tracking" setting to provide learners an opportunity to

review a course after it has been completed. If not included, the default value for this

paramter is "false".

RegForCredit

The "regForCredit" parameter is used when the SCORM Engine creates a new registration

upon launch. If the "regForCredit" parameter is passed in and set to "false", the SCORM

Engine will create a new regisration with the data model element for credit ("cmi.credit" or

"cmi.core.credit") set to "no credit". This setting is useful for lanching courses that should

be tracked but that don't "count" for anything. If not included, the default value for this

paramter is "true".

CC

The "cc" parameter can be used by a client integration to force the delivery language to a

particular culture code, e.g., 'en', 'fr', via the launch string. This functionality is not enabled

by default. To make use of this parameter the client should override the SetCulture()

integration method in the integration layer.

StartSCO

If provided, this parameter identifies a SCO that the SCORM Engine should launch first. If

not provided, the SCORM Engine will either launch the first SCO (for new registrations) or

the SCO from which the learner suspended a previous attempt (for previously attempted

registrations). Note that these default SCOs can be altered by SCORM 2004 sequencing

rules in the content. The format of this parameter is a string representing the Item identifier

associated with the SCO to be launched in the manifest. Note that if the manifest contains

SCORM 2004 sequencing rules, it might not always be possible to launch the specified SCO

(if for instance it's prerequisites are not met). In this case, the learner will be prompted with

a message to make another selection.

Serializing and Encoding

All values must be properly escaped (or "URL Encoded") when they are included in the

query string. It is important not to double encode the values. All common programming

languages include a library function for properly escaping values to be placed in a

querystring. For static values that do not change, it can be helpful to use a tool to perform

the one time encoding.

When passing an external package id, external registration id or external configuration id to

the SCORM Engine these objects must be represented in their serialized state. The number,

type and name of the properties contained in each of these of these objects in unique to

each integration. Often, there is just one property, in which case the serialized version of

the object is just the value for that property. However, in cases where there is more than

one property, the serialized form of the object is a series of name value pairs separated by

delimiters. By default, the delimiter that is between the name and value is a pipe character

("|") and the delimiter between a set of names and values is an exclamation mark character

("!"). Note that these defaults will vary based on the version of the SCORM Engine and can

be different for each integration.

For example, if an external registration id is composed of two fields, userName and

courseId, then a serialized external registration id might look like this:

userName|joeuser!courseId|42That value indicates an external registration id with a value for

userName of "joeuser" and a vale for courseId of "42". When passing the serialized value

into the SCORM Engine, the entire serialized value needs to be URL Encoded. Note that "!"

does not need to be escaped and that the escaped represenation of "|" is "%7c". Once

escaped, the above example would look like:

userName%7cjoeuser!courseId%7c42The Noddy LMS can simplify the process of created

serialized and escaped object values. When creating new registrations, the Noddy LMS will

display the proper launch URL. Since the Noddy LMS can be configured to use your specific

integration, it is easy to simply copy and paste values into your code.

http://en.wikipedia.org/wiki/Percent-encoding
http://www.albionresearch.com/misc/urlencode.php

Common Configurations

Launch a registration "normally"

Paramet

er Name

Value to pass in

"configura

tion"

A serialized external configuration object if

used by your integration.

"registrati

on"

A serialized external registration id

"package" A serialized external package id

"manifest

DirPath"

Not included

"webPath

"

Not included

"tracking" Not included

"forceRevi

ew"

Not included

"regForCr

edit"

Not included

Launch a completed registration in review mode with no changes to

the tracking data

Paramet

er Name

Value to pass in

"configura

tion"

A serialized external configuration object if

used by your integration.

"registrati

on"

A serialized external registration id

"package" Not included

"manifest

DirPath"

Not included

"webPath

"

Not included

"tracking" "false"

"forceRevi

ew"

"true"

"regForCr

edit"

Not included

Launch an imported course in preview mode with no tracking

Paramet

er Name

Value to pass in

"configura

tion"

A serialized external configuration object if

used by your integration.

"registrati

on"

Not included

"package" A serialized external package id

"manifest

DirPath"

Not included

"webPath

"

Not included

"tracking" Not included (only relevant if a registration is

passed in)

"forceRevi

ew"

Not included

"regForCr

edit"

Not included

Launch a course that does not "count" for credit, but should still be

tracked

Paramet

er Name

Value to pass in

"configura

tion"

A serialized external configuration object if

used by your integration.

"registrati

on"

A serialized external registration id

"package" A serialized external package id

"manifest

DirPath"

Not included

"webPath

"

Not included

"tracking" Not included

"forceRevi

ew"

Not included

"regForCr

edit"

"false"

Launch a course directly from a manifest that has not yet been

imported

Paramet

er Name

Value to pass in

"configura

tion"

A serialized external configuration object if

used by your integration.

"registrati

on"

Not included

"package" Not included

"manifest

DirPath"

File path to manifest

"webPath

"

Web path to course directory

"tracking" Not included

"forceRevi

ew"

Not included

"regForCr

edit"

Not included

Mode and Credit

The SCORM runtime data model contains two elements that indicate the context in which a

course was launched. This context is affected by the parameters that are passed into the

SCORM Engine on launch. The "mode" data model element indicates that the course was

launched either in a "normal", "review" or "browse" mode. The "credit" data model element

indicates whether or not the course is being taken for credit.

Mode:

● By default, when a course is launched with a registration id, the "mode" will be

"normal".

● By default, when a course is launched without a registration id, the "mode" will be

"browse"

● If the "forceReview" parameter is included with a value of "true", then the "mode" will

always be "review".

● Note: per the SCORM specification, "mode" can also change to "review" after a SCO is

completed

Credit:

● By default, when a course is launched with a registration id, the "credit" value will be

set to "credit".

● When a course is launched with a registration id and the "regForCredit" parameter is

passed with a value of "false", the "credit" value will be set to "no credit".

● When a course is launched without a registration id, the "credit" value will always be

set to "no credit".

SCORM Engine 2008.1 Upgrade Notes

Significant Integration Changes

The "central" and "remote" web applications have been

consolidated.

The SCORM Engine supports an advanced deployment scenario we term the "remote/central
architecture". The majority of our clients do not take advantage of the advanced content deployment
strategies this architecture enables so we decided to consolidate our code base to simplify deployment for
the majority. Previously the SCORM Engine deployable included two seperate applications, a "central"
and a "remote" that had to be deployed in all instances. In this release, these projects have been
consoldated into a single application called "SCORM Engine" This web application contains all functionality
and in most instances will be the only web application that is deployed. For installations which use the
"remote/central architecture", the single SCORM Engine application will be deployed in their place. In this
case, configuration settings will determine if the installation should take on a "central" role or a "remote"
role. The configuration settings will be the same as they were when separate applications were used.

The SCORM Engine libraries have been consolidated into a single

library.

Rather than deploying seven separate code libraries as we did previously, the SCORM Engine now
includes a single library file named RusticiSoftware.ScormEngine.dll (.Net) or scormengine.jar (Java). This
change will allow Rustici Software to better control versioning and upgrades of the core SCORM Engine
and simplify the integration development environment. For clients who are linking directly to the SCORM
Engine's code, you are encouraged to reference this code library directly rather than incorporating the
source code into your solutions and compiling it on your own. We will still provide full source code access,
but this change will allows us to provide you with better support since we will have more precise
knowledge about what version of our code you are running against.

A new default UI has been created.

For installations that have done little customization to the "skins" (*deliver.aspx, *launch.aspx, etc.), it is
recommended that you switch to using the default UI. The stylesheet for this default UI provides a
degree of customization and will allow Rustici Software to provide better management of the skin going
forward.

A formalized public API was added.

A ScormEngineManager class has been added to formalize the public

API into the SCORM Engine that LMS integrations should be using.

There is a new ScormEngineManager class that provides a clean formal API for interacting with the
SCORM Engine's business logic. This class provides a unified way to add/get/delete/update course
packages and registrations, using only the external keys that the external LMS is knowledgeable of.
Furthermore, all methods in the ScormEngineManager are version/instance aware so clients can more
appropriately make use of the new built-in package versioning and multiple registration instance
capability (if enabled).

Upgrading from SCORM Engine 2007.1

Step 1: Change your library references

With SCORM Engine 2008.1 onward we will be delivering a versioned binary dll/jar which should be used
in place of RusticiSoftware.ScormContentPlayer.* source code projects in your solution. Please remove
these projects and add remove your library references to RusticiSoftware.ScormContentPlayer.* projects.
In their place you will simply need to add a reference to RusticiSoftware.ScormEngine.dll (.NET) or
scormengine.jar (Java). You will still need your integration source code project as well as the web
application that provides import and related functionality.

Step 2: Utilize the new SCORM Engine web application

If your ScormContentPlayerCentral and ScormContentPlayerRemote web applications were previously
deployed directly to IIS as independent web applications, you will simply need to remove those and add
the new ScormEngine web application. If the SCORM Engine files are deployed directly beneath the IIS
root (typically c:\inetpub\wwwroot) you will just need to browse to the directory in IIS and click the
"create" application button under its properties. Otherwise, you will need to create a new virtual directory
named ScormEngine in IIS and point it to the SCORM Engine application files.

Finally, copy your freshly compiled integration library into the ScormEngine's /bin directory.

Some LMS integrations actually choose to include the ScormEngine as a subdirectory of their own LMS
web application. If that's the case, you will need to remove your references to the
RusticiSoftware.ScormContentPlayer.* projects and remove the "central" and "remote" application files
from your web application. In their place, copy the entire ScormEngine web application to a subdirectory
named \ScormEngine. You can do this by simply dragging the \ScormEngine folder directly from Windows
Explorer into the Visual Studio Solution Explorer. The aspx files will be treated as content rather than
source code. Then add a reference to the RusticiSoftware.ScormEngine.dll that's in \ScormEngine\bin.
Finally, add an entry to your web.config to include \ScormEngine\bin in the dll search path

<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="ScormEngine\bin"/>

</assemblyBinding>
</runtime>

</configuration>

Step 3: Upgrade your Database

Run the appropriate 2007.1 -> 2008.1 upgrade script for you particular database (SQL Server, Oracle,
MySQL, DB2).

Step 4: Configuration Changes

A few new configuration settings have been added. Listed below are the new settings with the default
settings. Note that the versioning parameters are only useful to those integrations which are created to
take advantage of them -- simply changing the parameter will not automatically enable versioning.
Similarly, the SSP settings are only applicable to those clients who have licensed the SSP plugin. These
settings are typically found in the ScormEngineSettings.config file or directly in our application's
web.config file.

<add key="DataPersistanceUseStoredProcsIfAvailable" value="true"/>

<add key="SSPEnabled" value="true" />
<add key="SSPSizeAllocation" value="1048576"/>

<add key="StylesheetUrl" value="/scormengine/defaultui/scormengine.css"/>

<add key="WhenToRestartRegistration" value="never" />

<add key="IsPackageVersioningEnabled" value="false"/>

Step 5: Integration Class Changes

If you have made no customizations to your deliver UI we would suggest you utilize the new default UI
now included as part of the core SCORM Engine. To do this, simply remove the GetCosmeticInfo()
methods from you integration class so the defaults implementations will be used. Then change your
launch string to point to /ScormEngine/defaultui/launch.aspx. Some degree of customization is still
available through the use of a CSS Stylesheet. The url for this stylesheet is in you
ScormEngineSetttings.config file (or web.config).

Step 6: Web Controls References Change

Because all library code, including web controls, has been consolidated into
RusticiSoftware.ScormEngine.dll you will need to make a small change to any .aspx pages to utilize the
SCORM Engine web controls. Simply Change all references in .aspx pages from
Assembly="RusticiSoftware.ScormContentPlayer.WebControls" to
Assembly="RusticiSoftware.ScormEngine".

SCORM Engine Course Properties

[Documentation no longer available for this section]

SCORM Engine Scalability

Introduction

Clients often ask us “How many users can the SCORM Engine can support?” Our answer
usually falls somewhere between “a lot” and “it depends”. Both are true, but not very helpful.
This document will shed some more light on the empirical data we have about the scalability of
the SCORM Engine as well as the results of some measured stress testing we recently performed.

Why is this such a hard question?

There are many factors that affect the load on the server when delivering online training through
the SCORM Engine. All of them can greatly impact scalability.

Deployment Variability

The SCORM Engine is designed to be tightly integrated into external LMS systems, every one of
which is different. Most significantly, the LMS’s we have integrated with use just about every
application stack on the market. The SCORM Engine is deployed on Windows servers, Linux
servers and even the occasional Mac server. It runs on top of SQL Server, Oracle, MySql, DB2
and a few other databases. These environments are sometimes replicated, sometimes clustered,
sometimes load balanced and all of them have different authentication and security requirements.

Integration Variability

The SCORM Engine has a very flexible interface with which it ties into a client’s LMS. How
this interface is used and configured can have a significant impact in the server side load. For
instance, the amount of data that is communicated and shared across systems will have a
measurable impact on performance. The method in which this data is transmitted also comes into
play; do the systems communicate via SOAP requests, through direct API calls, through access
to a shared database or something else?

Course Variability

SCORM offers allows for a lot of flexibility in how courses are put together. There is a big
difference in the amount of data that the SCORM Engine must track for a single SCO course
verses a course with one hundred SCOs. Within each SCO, there can also be a huge variation in
the amount of data that the SCO chooses to record and track. Some SCOs do nothing more than
indicate that they are starting and completing while others will track the learners’ progress in
detail (including things like how they answer questions and how they are progressing on various
learning objectives). How courses use SCORM 2004 sequencing and how large the actual
courseware files are will also impact performance.

Usage Variability

Different communities of practice will experience different usage patterns of their LMS. Some
communities will have users that take all their training in clumps while others will have users
who only access the system in short bursts. Some systems are mostly accessed during business
hours while others are active twenty-four hours a day. Systems that support supplemental
material in a classroom may have many users all start a course simultaneously, while more
asynchronous systems will have users starting and stopping throughout the day.

Empirical Evidence

Empirically we know that the SCORM Engine can scale quite well. Several of our clients operate
very large LMS instances in which the SCORM Engine performs admirably. One client in
particular tracks over 1.5 million users and routinely processes over 50,000 course completions
in a day. Other clients serve entire military branches from server farms distributed throughout the
globe. Of course there have been occasional hiccups, but by and large the SCORM Engine
handles these loads quite well.

Architecturally we designed the SCORM Engine for scalability from the start. One of the more
significant architectural decisions we made was to push the SCORM sequencer down to the
browser. Interpreting the SCORM 2004 sequencing rules can require a fair amount of
processing. In a conventional SCORM player, in between every SCO, data must be sent to the
server, undergo extensive processing and then be returned back to the client. In the SCORM
Engine, all of this processing happens locally in the browser, eliminating a significant load on
the server as the course is delivered. Typically the bulk of the server-side load happens when a
course is launched as all of the required course data is retrieved from the database and sent to the
browser. During course execution, incremental progress data is periodically sent to the server
resulting in relative small hits to the server as this data is persisted to the database.

Stress Testing Results

In February of 2008, we conducted a performance test to get benchmark numbers reflecting the
scalability of the SCORM Engine as represented by the number of concurrent users accessing the
system. The intent of this test was to establish a benchmark of scalability on a simple
representative system which can be used to roughly infer the performance of a more
comprehensive system. As mentioned above, there are a number of variables that contribute to
the scalability of a production system, any one of which can create a bottleneck or stress a
system. We highly recommend adequate stress testing in a mirrored environment prior to
deployment.

Methodology

To simulate user activity within the SCORM Engine, we began by selecting four diverse courses
to use in our testing. The courses included:

● A single SCO, flash-based SCORM 1.2 course

● A short SCORM 2004 course that reports detailed SCORM runtime data to the LMS
● A simple sample SCORM 2004 course that performs simple sequencing
● An advanced SCORM 2004 course that makes extensive use of sequencing

We then captured the client-server HTTP interactions of a typical user progressing through each
course. This data was massaged into a script that would accurately simulate many users hitting
the system and updating their own individual training records.

Our test was set up on a dedicated server farm consisting of a single central LMS server and two
clients from which the user requests were made using The Grinder load testing software. The
LMS server has the following specifications:

Processor: Intel Pentium D 3.00 GHz
RAM: 2 GB
Disk: 130 GB
Operating System: Windows Server 2003 Enterprise Edition, Service Pack 1
Web Server: IIS v6.0 with ASP.NET 1.1.4322
Database: SQL Server 2005
SCORM Engine: Alpha version of 2008.1, configured to persist data every 10 seconds
and rollup minimal data to an external system

The two client machines have similar specifications. If you’re not a numbers person, you can
think of it this way, these were the cheapest servers we could buy from Dell in the summer of
2007, with Microsoft software typical of the day. All machines were directly connected to one
another on a gigabit switch.

Simulating concurrent users proved to be trickier than expected due to the need to stagger the
start of each user simulated user’s progress through the course. Our solution was to start the
desired number of users at randomly spaced intervals over a period of 20 minutes. Since some
users would complete their course in less than 20 minutes, each user was set to start the course
again after completing it. After allowing 20 minutes to get up to full load, we measured system
performance over the course of 10 minutes to get an accurate feel for how the system performed
under load.

During that 10 minute period, we monitored the following metrics:

● Processor Utilization – Percentage of available processor time used by the application
● Committed RAM – Percentage of available RAM used by the application
● Wait Time – The amount of time the HTTP requests waiting in a queue before they were

processed.
● Execution Time – The amount of time it took to actually process each web request once it

reached the front of the queue

Note that we did not monitor bandwidth utilization. The reason for this decision is that typically
the bandwidth consumed by the SCORM Engine pales in comparison to the bandwidth used by

the actual training material. Thus we did not think bandwidth relevant to a discussion on the
scalability of the SCORM Engine; however it could play a significant role in the scalability of a
production LMS system.

Results

Our intent was to run these tests and continually increment the number of concurrent users until
either a resource was constrained or the average server response time exceeded one second. Both
events seemed to happen around the same time at about 1000 concurrent users.

As you can see in the results above, processor utilization seems to be the constraining resource in
this system configuration. There is a linear relationship to processor utilization and the number
of concurrent users until the processor utilization is maxed out at around 90%. RAM utilization
increases only slightly with load. Failure begins to occur as the processor becomes overwhelmed
and HTTP requests begin to get stacked up in a queue waiting for the processor to become
available.

We also analyzed the server load as users progress through a course. The logarithmic trend line
in the graph below clearly shows the initial front end load (seen by the spike in the first request)
followed by a relatively steady load as the course progresses.

Conclusions

A single server of modest horsepower can handle a concurrent user load of approximately 1000
users. Making some assumptions, we can get a rough idea of how many total system users this
represents. Assume that a user will take a SCORM course once a week (probably an optimistic
assumption). Assume that each SCORM course lasts one hour and that all training is evenly
distributed during a 12 hour window each day. That means that each system user consumes one
hour out of 60 available every week (assuming a 5 day week). If 1000 users can access the server
at any given moment, we roughly have 60,000 available hours. Since each user consumes
roughly one hour, theoretically this server could support an LMS with 60,000 registered users.
Obviously these calculations are rough and don’t allow for spikes in usage, but they at least
provide an estimate from which to begin.

